《乘法分配律》教學(xué)反思

    時間:2025-02-28 11:29:51 賽賽 教學(xué)反思 我要投稿

    《乘法分配律》教學(xué)反思(通用16篇)

      作為一名人民老師,我們的任務(wù)之一就是課堂教學(xué),借助教學(xué)反思可以快速提升我們的教學(xué)能力,教學(xué)反思應(yīng)該怎么寫才好呢?以下是小編整理的《乘法分配律》教學(xué)反思,僅供參考,歡迎大家閱讀。

    《乘法分配律》教學(xué)反思(通用16篇)

      《乘法分配律》教學(xué)反思 1

      乘法分配律是一節(jié)比較抽象的概念課,教師可以根據(jù)教學(xué)內(nèi)容的特點,為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識。

      具體是這樣設(shè)計的:先創(chuàng)設(shè)佳樂超市的情景調(diào)動學(xué)生的學(xué)習(xí)積極性,通過買“3套運動服,每件上衣21元,每條褲子10元,一共花多少元?”列出兩種不同的式子,他們確實能夠體會到兩個不同的算式具有相等的關(guān)系。這是第一步:通過資料獲取繼續(xù)研究的信息。(雖然所得的信息很簡單,只是幾組具有相等關(guān)系的算式,但這是學(xué)生通過活動自己獲取的,學(xué)生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調(diào)動學(xué)生的參與意識。)

      第二步:觀察算式,尋找規(guī)律。讓學(xué)生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,教師不要急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗證。這里既培養(yǎng)了學(xué)生的'猜測能力,又培養(yǎng)了學(xué)生驗證猜測的能力。

      第三步:應(yīng)用規(guī)律,解決實際問題。通過對于實際問題的解決,進(jìn)一步拓寬乘法分配律。這一階段,既是學(xué)生鞏固和擴(kuò)大知識,又是吸收內(nèi)化知識的階段,同時還是開發(fā)學(xué)生創(chuàng)新思維的重要階段。

      《乘法分配律》教學(xué)反思 2

      首先結(jié)合學(xué)生熟悉的問題情境,幫助學(xué)生體會運算定律的現(xiàn)實背景。接著設(shè)計“懸念”,拋出四組題目,把學(xué)生引到“兩算式的結(jié)果相等”的情況中來。先請學(xué)生猜想,而后驗證,再請學(xué)生編題,讓每一個學(xué)生都不由自主地參與到研究中來。在編題過程中,很多學(xué)生都交出了正確的“答卷”,增強(qiáng)了他們學(xué)習(xí)的自信心和繼續(xù)研究的欲望。接著,請同學(xué)在生活中尋找驗證的方法,以四人小組為研究單位,學(xué)生的思維活動一下子活躍起來,紛紛探究其中的.奧秘。小組討論的方式,更促使學(xué)生之間進(jìn)行思維交流,激發(fā)學(xué)生希望獲得成功的動機(jī)。通過實踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內(nèi)化。這樣做,學(xué)生學(xué)得積極、學(xué)得主動、學(xué)得快樂,自己動手編題、自己動腦探索,從數(shù)量關(guān)系變化的多次類比中悟出規(guī)律,“扶”得少,學(xué)生創(chuàng)造得多,學(xué)生學(xué)會的不僅僅是一條規(guī)律,更重要的是,學(xué)生學(xué)會了自主自動,學(xué)會了進(jìn)行合作,學(xué)會了獨立思考,學(xué)生學(xué)得輕松,學(xué)得主動。

      通過這節(jié)課的教學(xué)我感受到:認(rèn)真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。

      《乘法分配律》教學(xué)反思 3

      乘法分配律是第三章的教學(xué)難點也是重點。這節(jié)課的設(shè)計。我是從學(xué)生的生活問題入手,利用與生活密切相關(guān)的情境圖植樹問題展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識。通過讓學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成的過程。回顧整個教學(xué)過程,這節(jié)課的亮點主要體現(xiàn)在以下幾個方面:

      在教學(xué)中,通過這次植樹情境讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。“一共有多少名學(xué)生參加這次植樹活動?”。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學(xué)生觀察,這個等式兩邊的運算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。

      重點是理解算式的意義,我們在引導(dǎo)中進(jìn)行總結(jié)(4+2)個25的和也可以寫為25分別乘以4和2,再把他們的`積相加的形式,接著讓同學(xué)們再次深化理解自己嘗試寫出幾個類似的算式,由于是網(wǎng)上教學(xué),沒辦法直接展示學(xué)生的算式,于是我在大屏幕上寫出幾個算式,讓同學(xué)們來說一說他們的觀察到的算式,從而總結(jié)出乘法分配律的規(guī)律。進(jìn)而通過計算,發(fā)現(xiàn)運用乘法分配律可以使得計算更加簡便。

      這節(jié)課的不足:

      當(dāng)我們運用乘法分配律進(jìn)行練習(xí)的時候,我發(fā)現(xiàn)學(xué)生在做題時會錯誤的把中間的+抄寫成×,導(dǎo)致錯誤。這說明學(xué)生沒有完全對乘法結(jié)合律和乘法分配律進(jìn)行區(qū)分,還需要再次進(jìn)行強(qiáng)調(diào)。

      這節(jié)課上對學(xué)生的主題地位有所忽視。雖然是網(wǎng)課教學(xué),沒辦法與學(xué)生共同在一間教室,沒辦法與學(xué)生面對面教學(xué),但是顧慮到時間的限制與學(xué)生的互動,留給學(xué)生的思考的時間不夠充分,接下來在教學(xué)設(shè)計時可以減少授課容量,留給學(xué)生充分的思考時間。

      《乘法分配律》教學(xué)反思 4

      乘法分配律一課是蘇教國標(biāo)版教材四年級下冊的內(nèi)容,是在學(xué)生經(jīng)過較長時間的四則運算學(xué)習(xí),對四則運算已有較多感性認(rèn)識的基礎(chǔ)上學(xué)習(xí)的。學(xué)生接觸過加法、乘法的驗算和口算等方面的知識,對此有較多的感性認(rèn)識,這是學(xué)習(xí)乘法分配律的基礎(chǔ)。教材安排這個運算律是從學(xué)生解決熟悉的實際問題引入的,讓學(xué)生通過觀察、比較和分析,初步感受運算的規(guī)律。然后讓學(xué)生根據(jù)對運算律的初步感知,舉出更多的例子,進(jìn)一步觀察比較,發(fā)現(xiàn)規(guī)律。教材有意識地讓學(xué)生運用已有經(jīng)驗,經(jīng)歷運算律的發(fā)現(xiàn)過程,讓學(xué)生在合作與交流中對運算律地認(rèn)識由感性逐步發(fā)展到理性,合理地構(gòu)建知識。

      課程標(biāo)準(zhǔn)提出“讓學(xué)生經(jīng)歷有效地探索過程”。教學(xué)中以學(xué)生為主體,激勵學(xué)生動眼、動手、動口、動腦積極探究問題,促使學(xué)生積極主動地參與“觀察——舉例——得出結(jié)論”這一數(shù)學(xué)學(xué)習(xí)全過程。學(xué)生掌握了學(xué)習(xí)方法,就等于拿到了打開知識寶庫地金鑰匙。由于乘法分配律是本課教學(xué)難點。教學(xué)中安排了三個層次,首先學(xué)生在觀察等式,初步感知等式特征的基礎(chǔ)上模仿寫等式,在模仿中逐步明晰特征。第二層次在觀察比較中概括特征,通過“由此你想到了些什么”引發(fā)學(xué)生聯(lián)想到是否具有普遍性。從而得到猜想:是不是所有的三個數(shù)都具有這樣的特征,再通過學(xué)生大量的舉例,驗證猜想,得出規(guī)律。本課從學(xué)生的學(xué)習(xí)情況來看,通過本課的`學(xué)習(xí)不但掌握了乘法分配律的知識,更重要的是學(xué)會了數(shù)學(xué)方法,并產(chǎn)生運用這一數(shù)學(xué)方法進(jìn)行探索的愿望和熱情。這些數(shù)學(xué)方法是學(xué)生終身學(xué)習(xí)必備的能力。

      《乘法分配律》教學(xué)反思 5

      乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運算定律以及乘法交換律、乘法結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。在本單元運算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律靈活地進(jìn)行簡便計算。

      在課堂上,創(chuàng)設(shè)了植樹活動的情境,求一共有多少名同學(xué)參加了植樹活動。在課堂中,鼓勵學(xué)生獨立思考,能用兩種方法解答出來,然后讓學(xué)生對比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。

      在學(xué)生理解了乘法分配律后,運用變式練習(xí)加深對乘法分配律意義的理解,讓學(xué)生不僅知道兩個數(shù)的`和與一個數(shù)相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數(shù)的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的意義。

      通過學(xué)習(xí),一些學(xué)生已掌握,但也有一些學(xué)生的語言敘述不熟練,雖然會背用字母表示的式子,但是不會靈活應(yīng)用。還有一些學(xué)生容易把乘法分配律和乘法結(jié)合律弄混淆。

      所以在復(fù)習(xí)鞏固時,要加強(qiáng)乘法結(jié)合律與乘法分配律的對比,讓學(xué)生對這兩個運算定律的結(jié)構(gòu)更清晰。還要加強(qiáng)對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應(yīng)用運算定律進(jìn)行簡便計算。

      《乘法分配律》教學(xué)反思 6

      乘法分配律是人教版數(shù)學(xué)第三單元的內(nèi)容,它是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進(jìn)行一些簡便計算的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。乘法分配律是本單元的教學(xué)重點,也是本節(jié)課內(nèi)容的難點,教材是按照分析題意、列式解答、講述思路、觀察比較、總結(jié)規(guī)律等層次進(jìn)行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習(xí)的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進(jìn)而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。

      同時,學(xué)好乘法分配律是學(xué)生以后進(jìn)行簡便計算的重要基礎(chǔ),對提高學(xué)生的計算能力有著舉足輕重的作用。但要做到讓學(xué)生進(jìn)行“探究、推理、自己總結(jié)規(guī)律”很難,因為上的是直播棵,為了突破難點,在備課時,我做足了功課,首先我從例題入手,把乘法分配律放在具體的情境中,結(jié)合學(xué)生已有的生活經(jīng)驗,學(xué)生發(fā)現(xiàn)解決問題策略很多,此題可以用兩種方法解答:(1)(4+2)×25;(2)4×25+2×25,通過比較,學(xué)生知道了為什么:(4+2)×25=4×25+2×25,經(jīng)歷了知識探究的過程,講完例題后,又讓學(xué)生通過發(fā)語音、課堂連麥的`形式讓舉了許多這樣的例子,提高了學(xué)生學(xué)習(xí)的積極性,每個例子不僅可放在具體情境中,也可借助乘法的意義讓學(xué)生進(jìn)一步理解,從而得出什么是“乘法的分配律及它的應(yīng)用”,課堂取得了很好的效果。

      《乘法分配律》教學(xué)反思 7

      乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運算定律以及乘法交換律和結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。在五大運算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的`重點是理解乘法分配律的意義,難點是利用乘法分配律進(jìn)行簡便計算 。

      成功之處:

      1.本課在教學(xué)情境的設(shè)計上沒有采用課本上的主題圖,而是選取學(xué)生熟悉的買校服情境:這學(xué)期學(xué)校要換新校服。上衣每件28元,褲子每條12元。我們班共需繳校服費多少元?學(xué)生獨立思考,同位交流,能用兩種方法解答出來,然后讓學(xué)生對比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(28+12)×44=28×44+12×44。

      2.加深對乘法分配律意義的理解,讓學(xué)生不僅知道兩個數(shù)的和與一個數(shù)相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數(shù)的和的形式。通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的意義。

      不足之處:

      1.在總結(jié)乘法分配律時沒有把結(jié)構(gòu)說的很透徹,導(dǎo)致學(xué)生出現(xiàn)在練習(xí)時有一個同學(xué)在同步學(xué)習(xí)的練習(xí)題中把連乘算成乘法分配律。

      2.學(xué)生的語言敘述不熟練,導(dǎo)致學(xué)生雖然會背用字母表示的式子,但是不會應(yīng)用。

      《乘法分配律》教學(xué)反思 8

      計算教學(xué)是小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,幾乎每一冊的教材中都有計算的教學(xué),而其中的“簡便計算”教學(xué)更是計算教學(xué)的一部“重頭戲”。學(xué)好簡便運算,不僅能降低計算的難度,而且能提高計算的正確率和速度,更重要的是,能使學(xué)生將學(xué)到的定理、定律、法則、性質(zhì)等運算規(guī)律融會貫通,達(dá)到學(xué)以致用的目的,從而能培養(yǎng)學(xué)生良好的計算習(xí)慣。

      乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。所以,對于乘法分配律的教學(xué),我沒有把重點放在規(guī)律的數(shù)學(xué)語言表達(dá)上,而是注重引導(dǎo)學(xué)生積極主動的參與感悟、體驗、發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過程,并且學(xué)會用辯證的思維方式思考問題,培養(yǎng)良好的思維習(xí)慣,真正落實學(xué)生的主體地位。

      在教學(xué)中,我主要做到了以下幾點:

      1、關(guān)注學(xué)生已有的知識經(jīng)驗。

      興趣是形成良好學(xué)習(xí)習(xí)慣的催化劑。以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境,也就是根據(jù)例題圖,提出問題:買5件夾克衫和5條褲子,一共要付多少元?通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗,并有意識的蘊含新知識的教學(xué),激發(fā)了學(xué)生的學(xué)習(xí)興趣。

      2、引導(dǎo)學(xué)生積極主動探究。

      配養(yǎng)學(xué)生主動探究的學(xué)習(xí)習(xí)慣,是數(shù)學(xué)老師在數(shù)學(xué)課上的重要任務(wù)。先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+45)×5=65×5+45×5這個等式,讓學(xué)生觀察,初步感知“乘法分配律”。再展開類比:假如我們要選擇另外兩種服裝,買的數(shù)量都相同,一共要付多少元?你還能用兩種方法來求一共要付的錢嗎?讓學(xué)生在再次解決問題的過程中進(jìn)一步感受乘法分配律的存在。然后我引導(dǎo)學(xué)生觀察,初步發(fā)現(xiàn)規(guī)律,再引導(dǎo)學(xué)生舉例驗證自己的發(fā)現(xiàn),得到更多的等式,繼續(xù)引導(dǎo)學(xué)生觀察,直到發(fā)現(xiàn)規(guī)律,同時質(zhì)疑是否有反例,再一致確定規(guī)律的存在,并得出字母公式。

      對于乘法分配律的教學(xué),我把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進(jìn)行觀察、比較和歸納,大膽提出自己的猜想并舉例進(jìn)行驗證。讓學(xué)生在課堂上經(jīng)歷了數(shù)學(xué)研究的基本過程:即感知——猜想——驗證——總結(jié)——應(yīng)用的過程,學(xué)生不僅自主發(fā)現(xiàn)了乘法分配律,掌握了乘法分配律的相關(guān)知識,而且掌握了科學(xué)探究的`方法,數(shù)學(xué)思維的能力也得到了發(fā)展。

      3、注重合作與交流,多向互動。

      學(xué)生在學(xué)習(xí)數(shù)學(xué)知識的過程中能學(xué)會與人合作交流,這也是一種良好的學(xué)習(xí)習(xí)慣,而倡導(dǎo)課堂教學(xué)的動態(tài)生成是新課程標(biāo)準(zhǔn)的重要理念。在數(shù)學(xué)學(xué)習(xí)中,每個學(xué)生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學(xué)生在數(shù)學(xué)學(xué)習(xí)中都得到發(fā)展,我在本課教學(xué)中立足通過生生、師生之間多向互動,特別是通過學(xué)生之間的互相啟發(fā)與補(bǔ)充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu)。學(xué)生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學(xué)生的問題意識,又拓寬了學(xué)生思維,增強(qiáng)思維的條理性,學(xué)生也學(xué)得積極主動。

      4、練習(xí)設(shè)計關(guān)注學(xué)生思維能力的發(fā)展。

      在練習(xí)題型的設(shè)計上,我基本尊重課本上知識的體系,在第4個練習(xí)中,三組題目的對比練習(xí)主要是鞏固學(xué)生對乘法分配律的理解,讓學(xué)生通過對比體會計算的簡便。而在計算的過程中會選擇更合理的方法進(jìn)行計算,這有助于幫助學(xué)生提高計算的正確性,有利于學(xué)生養(yǎng)成良好的計算習(xí)慣。我在設(shè)計教學(xué)時,先出示一組題,在學(xué)生發(fā)現(xiàn)它們之間的聯(lián)系后,有意讓女生做簡便的一題,讓學(xué)生初步感知女生做的題比較簡便,然后再出示第二組,還是有意讓女生做簡便的一題,所以還是女生優(yōu)先,至此我引導(dǎo)學(xué)生發(fā)現(xiàn):有時先加再乘比較簡便,有時先乘再加比較簡便,可以根據(jù)實際情況的不同,作出合理的選擇,甚至可以根據(jù)乘法分配律先做適當(dāng)改寫,使計算更簡便。

      這樣設(shè)計,使學(xué)生經(jīng)歷了兩輪比賽,對運用乘法分配律可以使計算簡便有了初步的體驗,并且產(chǎn)生了濃厚的學(xué)習(xí)興趣,對下一課時運用乘法分配律進(jìn)行簡便計算打下了良好的基礎(chǔ)。最后增加了一個變式題:“5件夾克衫比5條褲子貴多少元?”這是乘法分配律的變式,這在第三課時將會碰到這種題型,所以這里先埋下一個伏筆。由基本題到變式題,有機(jī)地聯(lián)系在一起。使學(xué)生逐步加深認(rèn)識,在弄清算理的基礎(chǔ)上,學(xué)生能根據(jù)題目的特點,靈活地運用所學(xué)知識進(jìn)行練習(xí)。從課堂反饋來看,學(xué)生熱情較高,能夠?qū)W以致用。學(xué)生通過自己的努力以及和同學(xué)的交流合作,思維能力得到了發(fā)展。

      教學(xué)過程是一個不斷探討的過程,不斷追尋的過程。作為一名數(shù)學(xué)老師,希望能在與學(xué)生有限的接觸時間內(nèi)幫助學(xué)生更快更好地養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣,使我們的學(xué)生終身受益。這是一個值得我永遠(yuǎn)追求并為之努力的目標(biāo)。

      《乘法分配律》教學(xué)反思 9

      在設(shè)計本節(jié)課的過程中,我一直抱著“以學(xué)生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學(xué)習(xí)任務(wù)、參與共同的學(xué)習(xí)活動過程中實現(xiàn)不同的人的數(shù)學(xué)水平得到不同發(fā)展的教學(xué)方式。結(jié)合教學(xué)設(shè)計,對本節(jié)課進(jìn)行以下反思:

      一、在 教學(xué)這節(jié)課時 ,我 以計算引入,復(fù)習(xí)舊知, 然后拋出一個較為復(fù)雜的算式“ 46×276+276×54”如何計算更簡便,一下子學(xué)生們鴉雀無聲了,他們陷入了沉思中,有的抓腦袋,有的搖頭,很是難為,這是,我很“自豪”的告訴他們,老師能在一秒鐘內(nèi)說出得數(shù),你們相信嗎?想知道老師的訣竅嗎? 一下子,把學(xué)生的求知欲和好奇心調(diào)動了起來。

      二、讓學(xué)生根據(jù)自己的愛好,選擇自己喜歡的方法列出來的算式就比較開放。 出示情景圖后,請學(xué)生自己思考,交流 。通過計算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上得到的結(jié)論,是來自于學(xué)生已有的數(shù)學(xué)知識水平的。通過用自己喜歡的方式來表達(dá)乘法分配律從而加以內(nèi)化。學(xué)生學(xué)得積極、學(xué)得主動、學(xué)得快樂,自己動手編題、自己動腦探索,從數(shù)量關(guān)系變化的多次類比中悟出規(guī)律。

      三、總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,我都予以肯定和表揚,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的`學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。

      四、在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。教師“扶”得少,學(xué)生創(chuàng)造得多,學(xué)生學(xué)會的不僅僅是一條規(guī)律,更重要的是,學(xué)生學(xué)會了自主自動,學(xué)會了進(jìn)行合作,學(xué)會了獨立思考。這對十歲左右的孩子來說,其激勵作用無疑是無比巨大的,而“愛思、多思、會思”的學(xué)習(xí)習(xí)慣,會讓孩子一生受益。

      在本節(jié)課的教學(xué)設(shè)計上,我體現(xiàn)新課標(biāo)的一些理念,注重從學(xué)生的實際出發(fā),把數(shù)學(xué)知識同生活實際緊密聯(lián)系起來,讓學(xué)生在體驗中學(xué)到知識。通過創(chuàng)設(shè)情境,設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)興趣。在練習(xí)題的設(shè)計上,我力求有針對性,有坡度,同時也注意知識的延伸。

      在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運用時問題較多等。教學(xué)乘法分配律之后,發(fā)現(xiàn)學(xué)生的正確率很低,特別是對乘法結(jié)合律與乘法分配律極容易混淆。有余數(shù)的除法教學(xué)反思法國號教學(xué)反思吃水不忘挖井人教學(xué)反思

      《乘法分配律》教學(xué)反思 10

      1、關(guān)注學(xué)生已有的知識經(jīng)驗

      以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境——為樹勛中心小學(xué)購買舞蹈服裝。通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗,使學(xué)生初步感知乘法分配律。讓學(xué)生始終處于主動探索知識的最佳狀態(tài),促使學(xué)生對原有知識進(jìn)行更新、深化、突破、超越。

      2、提供自主探索的機(jī)會

      一堂數(shù)學(xué)課可以有不同種教法,怎樣教才能在數(shù)學(xué)活動中培養(yǎng)學(xué)生

      的創(chuàng)新能力呢?我覺得,最重要的是保證學(xué)生的主體地位,提供自主探索的機(jī)會。在探索乘法運算律的過程中,提出的問題有易到難,層層遞進(jìn),不僅為學(xué)生提供了自主探索的時間和空間,使學(xué)生經(jīng)歷乘法運算律的產(chǎn)生和形成過程,而且讓學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)規(guī)律與奧秘,從而激發(fā)學(xué)生對數(shù)學(xué)深層次的熱愛。

      3、展示知識的'發(fā)生過程,引導(dǎo)學(xué)生積極主動探究

      現(xiàn)代教育觀認(rèn)為:課堂教學(xué)不只是知識的傳授過程,更是學(xué)生的發(fā)展過程。從數(shù)學(xué)學(xué)科的特點看,學(xué)生所學(xué)的數(shù)學(xué)知識是前人思維的結(jié)果。學(xué)習(xí)這些知識,不是簡單地吸收,而必須通過自己的思維,把前人的思維結(jié)果轉(zhuǎn)化為自己的思維結(jié)果。教師的任務(wù)是引導(dǎo)和幫助學(xué)生去進(jìn)行再創(chuàng)造,而不是把現(xiàn)成的結(jié)論灌輸給學(xué)生。讓學(xué)生在探索未知領(lǐng)域的過程中,付出與前人發(fā)現(xiàn)這些知識所曾經(jīng)付出的大體相同的智力代價,從而有效地實現(xiàn)知識訓(xùn)練智力的價值。例如在“乘法分配律”教學(xué)中,我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+35)×12=65×12+35×12這個等式,讓學(xué)生觀察,初步感知“乘法分配律。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己

      發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅要讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且讓學(xué)生學(xué)習(xí)科學(xué)探究的方法,以培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。

      4.讓學(xué)生不斷在“反思”中學(xué)習(xí),“體驗”中學(xué)習(xí)

      建構(gòu)主義強(qiáng)調(diào),學(xué)習(xí)不是簡單地讓學(xué)習(xí)者占有別人的知識,而是學(xué)習(xí)者主動地建構(gòu)自己的知識經(jīng)驗,形成自己的見解。在學(xué)習(xí)過程中學(xué)習(xí)者不僅要不斷監(jiān)視自己對知識的理解程度,判斷自己的進(jìn)展與目標(biāo)的差距,采取各種增進(jìn)和幫助思考的策略,而且還要不斷地反思自己的學(xué)習(xí)過程。由于數(shù)學(xué)對象的抽象性、數(shù)學(xué)活動的探索性決定了小學(xué)生不可能一次性地直接把握數(shù)學(xué)活動的本質(zhì),必須要經(jīng)過多次的反復(fù)思考、深入研究和自我調(diào)整才可能洞察數(shù)學(xué)活動的本質(zhì)特征。就小學(xué)數(shù)學(xué)課堂教學(xué)而言,反思的內(nèi)容主要有:對自己的思考過程進(jìn)行反思,對解題思路、分析過程、運算過程、語言的表述進(jìn)行反思,對所涉及的數(shù)學(xué)思想方法反思等。在數(shù)學(xué)活動中,當(dāng)學(xué)生在探索過程中遇到障礙或出現(xiàn)錯誤時,教師可以提出一些針對性的、具有啟發(fā)性的問題引導(dǎo)學(xué)生主動地反思探索過程;當(dāng)數(shù)學(xué)活動結(jié)束后,要引導(dǎo)學(xué)生反思整個探索過程和所獲得結(jié)論的合理性,以獲得成功的體驗。在“乘法分配律”教學(xué)中,我先向?qū)W生我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+35)×12=65×12+35×12這個等式,讓學(xué)生觀察,是讓學(xué)生初步感知這個規(guī)律。同時也體現(xiàn)了教學(xué)的差異性,給沒有發(fā)現(xiàn)規(guī)律的同學(xué)以再次發(fā)現(xiàn)的機(jī)會。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律,來加深學(xué)生的數(shù)學(xué)體驗。又如,學(xué)習(xí)了“乘法分配律”后,教師可讓學(xué)生反思:“乘法分配律”是怎樣總結(jié)出來的?從中你受到了什么啟發(fā)?什么知識與“乘法分配律”有聯(lián)系?學(xué)了“乘法分配律”后有什么用?這樣既豐富了學(xué)生的數(shù)學(xué)體驗,又提高了學(xué)生的“反思”的意識和能力。

      本課中注意引導(dǎo)了學(xué)生在數(shù)學(xué)活動中體驗數(shù)學(xué),在數(shù)學(xué)中感悟數(shù)學(xué),實現(xiàn)了運算律的抽象化與外化運用的認(rèn)知飛躍,同時也體驗到了學(xué)習(xí)數(shù)學(xué)的樂趣。

      《乘法分配律》教學(xué)反思 11

      乘法分配律是四年級學(xué)習(xí)的重點,也是難點之一。它是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的,是一節(jié)比較抽象的概念課,因此教學(xué)時我根據(jù)教學(xué)內(nèi)容的特點,為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識。

      1、在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有的同學(xué)是橫向觀察,有的是縱向觀察,老師都予以肯定和表揚,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的.學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。

      2、從學(xué)生已有知識出發(fā)。提供充分的信息,為學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計算引入,有復(fù)習(xí)舊知,也有比一比誰的計算能力強(qiáng)開場。我想是不是可以拋開計算,帶著愉快的心情進(jìn)課堂,因此,我在一開始設(shè)計了一個植樹的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點較低,學(xué)生比較容易接受。

      3、充分調(diào)動學(xué)生的學(xué)習(xí)熱情,去猜想——傾聽——舉例——驗證。老師沒有過多的講授,也沒有花大量的時間去刻意的創(chuàng)設(shè)教學(xué)情境,只是做喚醒學(xué)生主體意識的工作,引導(dǎo)學(xué)生大膽猜想,大膽表達(dá)。學(xué)生借助已有的知識經(jīng)驗,自主解決新問題,使學(xué)生的主體地位得以體現(xiàn)。

      《乘法分配律》教學(xué)反思 12

      本節(jié)課主要讓學(xué)生充分感知并歸納乘法分配律,理解其意義。教學(xué)中,我從解決實際問題(買衣服)引入,通過交流兩種解法,把兩個算式寫成一個等式,并找出它們的聯(lián)系。讓學(xué)生初步感知乘法分配律的基礎(chǔ)上再讓學(xué)生舉出幾組類似的.算式,通過計算得出等式。

      在充分感知的基礎(chǔ)上引導(dǎo)學(xué)生比較這幾組等式,發(fā)現(xiàn)有什么規(guī)律?這里我化了一些時間,我發(fā)現(xiàn)學(xué)生在用語言文字?jǐn)⑹龇矫嬗行├щy,新教材上也沒有要求,因此,只要學(xué)生意思說到即可,后來,我提了這樣一個問題,你能用自己喜歡的方式來表示你發(fā)現(xiàn)的規(guī)律嗎?學(xué)生立即活躍起來,紛紛用自己喜歡的方式來闡明自己發(fā)現(xiàn)的規(guī)律:有用字母的,有用符號的,大部分學(xué)生會說,沒問題。對于應(yīng)用這一乘法分配律進(jìn)行后面的練習(xí)還可以。如:書上第55頁的第5題,學(xué)生都想到用簡便方法去列式計算。整節(jié)課,學(xué)生還是學(xué)的比較輕松的。

      《乘法分配律》教學(xué)反思 13

      一、讓學(xué)生從實質(zhì)上理解乘法分配律

      在乘法分配律的教學(xué)中,如果只求形式把握不求實質(zhì)理解,一方面從認(rèn)識的角度看是不嚴(yán)謹(jǐn)?shù)模ㄐ问缴系牟煌耆珰w納不一定得出真理),另一方面很容易造成學(xué)生不求甚解、囫圇吞棗的不良認(rèn)知習(xí)慣。如果滿足于從形式上掌握乘法分配律,對于學(xué)生的后續(xù)發(fā)展也極為不利。因此,在教學(xué)時先出示了這樣一道例題:一件茄克衫65元,一條褲子35元。王老師買5件茄克衫和5條褲子,一共要花多少元?學(xué)生用了兩種解答方法即:(65+35)×5=65×5+35×5。借助對同一實際問題的不同解決方法讓學(xué)生體會乘法分配律的合理性。

      二、突破乘法分配律的教學(xué)難點

      相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點。為了突破教學(xué)難點,我設(shè)計了一系列的練習(xí)。

      1、在□里填數(shù),○里填運算符號:如(25+45)×4=□○□○□○□……

      2、在相等的.一組算式后面打“√”:如16×7+24×7(16+24)×7□……

      在這一組題目中教者重點評析了最后一道題:40×50+50×9040×(50+90)□。先讓學(xué)生說說著一題為什么不能打√,再根據(jù)乘法分配律的特征,分別寫出與左右算式相等的式子。通過練習(xí)學(xué)生對乘法分配律有了進(jìn)一步的認(rèn)識,又讓學(xué)生照上面的樣子寫出的幾個這樣的等式,最后歸納出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。

      實際上課堂時學(xué)生對于能否找到反例的活動很感興趣,可以嘗試讓學(xué)生也提幾個反例,經(jīng)過討論逐個否決,在這樣的過程中,學(xué)生的等式變形能力能夠得到很大提高,有益于加深對乘法分配律的認(rèn)識。

      《乘法分配律》教學(xué)反思 14

      新課標(biāo)強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋和應(yīng)用的過程,進(jìn)而使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力方面得到進(jìn)步和發(fā)展。

      乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解與敘述的定律。因此在教學(xué)中我設(shè)計了一些學(xué)生熟悉的問題,讓學(xué)生在不斷的感悟、體驗中理解乘法分配律,從而概括出乘法分配律。

      1、分組比賽,激發(fā)學(xué)習(xí)興趣。

      為了激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生探究的積極性,首先設(shè)計兩道題(4+2)×25 4×25+2×25,把學(xué)生分成兩組進(jìn)行比賽。通過比賽讓學(xué)生發(fā)現(xiàn)這兩道題結(jié)果是相等的,它們可以用一個等號連接起來,但第二題做起來比較快而且比較簡單。可他們之間有什么聯(lián)系和規(guī)律不急著讓學(xué)生進(jìn)行探究而把懸念留著,讓學(xué)生通過下一環(huán)節(jié)來發(fā)現(xiàn)。

      2.分組討論,發(fā)現(xiàn)規(guī)律。

      在學(xué)習(xí)完例題后,讓學(xué)生分組討論比較8×6+2×6(8+2)×6 27×46+73×46(27+73)×46每組兩道算式,發(fā)現(xiàn)蘊藏在題目中的規(guī)律。

      3、判斷、辨析,加深理解。

      在學(xué)生通過發(fā)現(xiàn)問題、舉例驗證、建立模型、總結(jié)規(guī)律后,為了加深學(xué)生對乘法分配律的理解,我針對平時學(xué)生練習(xí)中的`錯誤,搜集了一些具有代表性的錯例,如10×5+5×11和10×(5+11),(5×6)×2和5×2+6×2,(13+9)×4和13×4+9等式子,讓學(xué)生進(jìn)行判斷、辨析,并說出錯誤的原因然后改正。這樣通過辨析讓學(xué)生對于乘法分配律的理解更清晰,更到位。

      《乘法分配律》教學(xué)反思 15

      乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是所有運算定律中變化最多的,因此它是學(xué)生最難理解與運用的定律。因此我在教學(xué)中讓學(xué)生在不斷的感悟、體驗中理解乘法分配律,從而概括出乘法分配律。

      一、在對本課的教學(xué)目標(biāo)上,我定位在:

      (1)從學(xué)生已有生活經(jīng)驗出發(fā),通過觀察、類比、歸納、驗證、運用等方法深化和豐富對乘法分配律的認(rèn)識。

      (2)滲透“由特殊到一般,再由一般到特殊”的認(rèn)識事物的方法,培養(yǎng)學(xué)生獨立自主、主動探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學(xué)的應(yīng)用意識。

      二、在本課教學(xué)過程的設(shè)計上

      我盡量想體現(xiàn)新課標(biāo)的一些理念,注重從實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在體驗中學(xué)到知識。順延之前學(xué)習(xí)乘法交換律和乘法結(jié)合律的情境舉例:利用植樹活動情境“一共有25個小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆水”。提出問題:“一共有多少名同學(xué)參加了這次植樹活動”。讓學(xué)生嘗試通過不同的方法得出:

      (4 + 2)×254×25 + 2×25

      = 6×25 = 100 + 50

      = 150(元)= 150(元)

      此時,讓學(xué)生觀察通過計算方法得到了相同的結(jié)果,這兩個算式可用“=”連接。使之讓學(xué)生從中感受了乘法分配律的模型。從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。”用字母形式表示:

      (a + b)× c = a × c + b × c

      三、在本節(jié)課的練習(xí)設(shè)計上,我力求有針對性、有坡度的知識延伸。

      1、在完成課本36頁做一做時,對應(yīng)這3道判斷題,

      (1)、判斷56×(19+28)=56×19+28,讓學(xué)生感知到乘法分配律要分給括號里的每一個數(shù),強(qiáng)調(diào)乘法分配律的“公平性”。

      (2)、判斷32×(7×3)=32×7+32×3,讓學(xué)生注意到乘法結(jié)合律和乘法分配律的'區(qū)別:通過對運算定律意義的描述,和算式的特點,提煉出最簡潔的區(qū)分方法:乘法結(jié)合律是連乘情況下的,乘法分配律除了乘法還有加法(后繼教學(xué)還會出現(xiàn)減法),容易使我們混淆的原因是,它們都是乘法的運算定律都有乘法出現(xiàn),更關(guān)鍵是它們都出現(xiàn)了小括號。

      (3)、判斷64×64+36×64,借助64個64和36個64,一共是64+36=100個64,讓學(xué)生理解乘法分配律逆向使用,在一些情況下,計算會變得十分簡便。

      2、在完成較簡單的課本36頁做一做后,進(jìn)行一些擴(kuò)展型的練習(xí):

      通過(250—25)×4,讓學(xué)生感受到,乘法分配律除也可以兩個數(shù)的差與一個數(shù)相乘。對于分配之后,再把兩個積相減。同時復(fù)習(xí)強(qiáng)調(diào)我們熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8

      由于本節(jié)課的知識運用的難度較大,學(xué)生對乘法分配律可以基本掌握,但是對于其萬般變化,還是有點力不從心,而該運算定律對學(xué)生后繼學(xué)習(xí),尤其是小數(shù)和分?jǐn)?shù)計算時有一定影響,所以還需要學(xué)生在本節(jié)課后進(jìn)行深入的學(xué)習(xí),教師也需要針對乘法分配律的每一種題型,結(jié)合學(xué)生的掌握情況進(jìn)行更系統(tǒng)深入的講解。

      《乘法分配律》教學(xué)反思 16

      乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學(xué)生理解。

      一、抓住重點。讓學(xué)生理解乘法分配律的意義。

      教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學(xué)生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學(xué)生在合作交流的過程中,對簡潔分配律的認(rèn)識由感性逐步上升到理性。教學(xué)用書上寫道:教學(xué)的重點和關(guān)鍵應(yīng)是引導(dǎo)學(xué)生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。

      在教學(xué)時,我是按照如上的步驟進(jìn)行教學(xué)的。可是在我引導(dǎo)學(xué)生把算式寫成等式的時候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進(jìn)行聯(lián)系。根本沒有從數(shù)字上面去進(jìn)行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達(dá)這一規(guī)律。場面一時之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>

      我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進(jìn)行表達(dá)。難道是坡度給得不夠嗎?還是平時的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。

      總之,這個關(guān)鍵今天并沒有完成好。

      二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。

      在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學(xué)生對乘法分配律的意義的理解。我認(rèn)為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達(dá)時,我們班的同學(xué)也有了兩種的`表達(dá)方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學(xué)生,乘法分配律的表示一般性采用的是這一條。

      三、練習(xí)中注意乘法分配律的變式。

      乘法分配律的意義是用,是為了計算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學(xué)生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時也是一樣。

      今天教學(xué)了運算律——乘法分配律,對于例題的解決,學(xué)生能列出不同的算式,45x5+65x5和(45+65)x5,通過各自的計算得出計算結(jié)果相同,然后把這兩條算式寫成等式45x5+65x5=(45+65)x5,學(xué)生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學(xué)生再仿寫了幾個算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學(xué)生把第3小題填錯,其實包括后面的練習(xí)中,把AxC+BxC改寫成(A+B)xC的正確率要比把(A+B)xC改寫成AxC+BxC的正確率高,可能還是學(xué)生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學(xué)會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74x(21+1)和74x21+74部分學(xué)生沒有發(fā)現(xiàn)它們是相等的,我讓認(rèn)為相等的學(xué)生表述理由,學(xué)生能把算式改寫成74x21+74x1再運用乘法分配律變形成74x(21+1),學(xué)生理解后我補(bǔ)充77x99+77=□(□○□)讓學(xué)生填空,完成情況好多了,在拓展練習(xí)時補(bǔ)充了AxB+B=□(□○□)和AxB+B=□(□○□)讓學(xué)生進(jìn)一步真正理解乘法分配律的意義。但學(xué)生在完成想想做做第5題時,學(xué)生多習(xí)慣列式48x3+48x2來計算,卻不能靈活運用所學(xué)知識列成(3+2)x48來計算,雖然運用乘法分配律進(jìn)行簡便計算是下一課的學(xué)習(xí)內(nèi)容,但我也由此反思出我教學(xué)的不足之處,在例題教學(xué)時只關(guān)注了得出等式,卻忽略了讓學(xué)生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補(bǔ)上了這一點。

    【《乘法分配律》教學(xué)反思】相關(guān)文章:

    《乘法分配律》教學(xué)反思09-20

    《乘法分配律》教學(xué)反思08-10

    乘法分配律教學(xué)反思07-20

    乘法分配律教學(xué)反思09-15

    乘法分配律教學(xué)反思09-09

    乘法分配律數(shù)學(xué)教學(xué)反思06-21

    關(guān)于《乘法分配律》教學(xué)反思08-13

    《乘法分配律的練習(xí)》教學(xué)反思10-12

    數(shù)學(xué)乘法分配律教學(xué)反思09-28

    《乘法分配律》數(shù)學(xué)教學(xué)反思范文09-09

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      一区二区三区国产V欧美 | 亚洲欧美中文字幕乱码在线 | 亚洲欧美日韩高清在线播放 | 亚洲欧美中文另类列奇 | 自拍偷拍一区二区三区四区 | 亚洲激情网五月婷婷久久 |