《三角形的內角和》教學設計

    時間:2023-03-14 12:58:14 教學設計 我要投稿

    《三角形的內角和》教學設計

      作為一名優(yōu)秀的教育工作者,往往需要進行教學設計編寫工作,教學設計把教學各要素看成一個系統(tǒng),分析教學問題和需求,確立解決的程序綱要,使教學效果最優(yōu)化。寫教學設計需要注意哪些格式呢?以下是小編為大家收集的《三角形的內角和》教學設計,歡迎閱讀與收藏。

    《三角形的內角和》教學設計

    《三角形的內角和》教學設計1

      一、說教材

      北師版八年級下冊第六章《證明一》,是在前面對幾何結論已經有了一定的直觀認識的基礎上編排的,而前幾冊對有關幾何結論都曾進行過簡單的說理,本章內容則嚴格給出這些結論的證明,并要求學生掌握證明的一般步驟及書寫表達格式。《三角形內角和定理的證明》則是對前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎。

      二、說目標

      1.知識目標:掌握“三角形內角和定理的證明”及其簡單的應用。

      2.能力目標培養(yǎng)學生的數學語言表達、邏輯推理、問題思考、組內及組間交流、動手實踐等能力。

      3.情感、態(tài)度、價值觀:

      在良好的師生關系下,建立輕松的學習氛圍,使學生體會獲得知識的成就感及與他人合作的樂趣,以增強其數學學習的自信心。

      4.教學重點、難點

      重點:三角形的內角和定理的證明及其簡單應用。

      難點:三角形的內角和定理的證明方法的討論。

      三、說學校及學生現實情況

      我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學校有遠程多媒體網絡教室,為師生提供了良好的學習硬件環(huán)境。我校學生幾乎全部來自本鎮(zhèn)農村,而我所教授的八年級四班學生,大多家庭貧苦,所以學習認真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。

      四、說教法

      根據本節(jié)課教學內容特點,我采用啟發(fā)、引導、探索相結合的教學方法,使學生充分發(fā)揮學習主動性、創(chuàng)造性。

      五、說教學設計

      〈一〉、創(chuàng)設情景,直入主題

      一堂新課的引入是教師與學生活動的開始,而一個成功的引入,可使學生破除畏難心理,對知識在短時間內產生濃厚的興趣,接下來的教學活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學習一個熟悉的結論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學生投入新課。

      〈二〉、交流對話,引導探索

      1、巧妙提問,合理引導

      證明思想的引入時,問:同學們,七年級時如何得到此結論?(留一定時間讓他們討論、交流、達成共識)學生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發(fā)了學生的學習興趣。接下來學生做題,我巡視。同時讓一學生板演。

      2、恰當示范,培養(yǎng)學生正確的`書寫能力

      在學生做完之后,我與他們一道分析板演同學證明是否合理,并利用多媒體給出正確書寫方法。

      3、一題多解,放手讓學生走進自主學習空間

      正因為學生的預習,所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學生思考,繼而熱烈討論,此時,我又走到學生中去,對有困難的學生多加關注和指導,不放棄任何一個,同時,借此機會增進教師與學困生之間的情誼,為繼續(xù)學習奠定基礎。最后,請有新方法的同學敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

      4、展示歸納,合理演繹

      利用多媒體展示三角形內角和定理的幾種表達形式,以促其學以致用。

      5、反饋練習

      用隨堂練習來鞏固學生所學新知,另一方面進一步提高學生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學效果。

      〈三〉、課堂小結

      1 采用讓學生感性的談認識,談收獲。設計問題:

      2(1)、本節(jié)課我們學了什么知識?

      (2)、你有什么收獲?

      目的是發(fā)揮學生主體意識,培養(yǎng)其語言概括能力。

      六、說教學反思

      本節(jié)課主要是以嚴謹的邏輯證明方法,驗證三角形內角和等于180度。讓學生充分體會有理有據的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點。自主學習、合作交流是新課程理念,也是我本節(jié)課的設計意圖。從學生課堂表現可以看出,教學效果良好。而學生的一些出乎意料的做法讓我倍感驚喜!把學生還給課堂,把課堂還給學生,也是我一貫的做法。

    《三角形的內角和》教學設計2

      教學要求

      1、通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。

      2、能運用三角形的內角和是180°這一規(guī)律,求三角形中未知角的度數。

      3、培養(yǎng)學生動手動腦及分析推理能力。

      教學重點

      三角形的內角和是180°的規(guī)律。

      教學難點

      使學生理解三角形的內角和是180°這一規(guī)律。

      教學用具

      每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

      教學過程:

      一、出示預習提綱

      1、三角形按角的不同可以分成哪幾類?

      2、一個平角是多少度?1個平角等于幾個直角?

      3、如圖,已知∠1=35°,∠2=75°,求∠3的度數。

      二、展示匯報交流

      1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內角。(板書:內角)

      2、三角形三個內角的度數和叫做三角形的內角和。(板書課題:三角形的內角和)今天我們一起來研究三角形的內角和有什么規(guī)律。

      3、以小組為單位先畫4個不同類型的.三角形,利用手中的工具分別計算三角形三個內角的和各是多少度?

      4、指名學生匯報各組度量和計算的結果。你有什么發(fā)現?

      5、大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

      6、剛才我們計算三角形的內角和都是先測量每個角的度數再相加的。在量每個內角度數時只要有一點誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

      提示學生,可以把三個內角拼成一個角,就只需測量一次了。

      7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

      8、三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內角和是180°)

      9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現了什么?(直角三角形和鈍角三角形的內角和也是180°)

      10、那么,我們能不能說所有三角形的內角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結論:三角形的內角和是180°。

      12、一個三角形中如果知道了兩個內角的度數,你能求出另一個角是多少度嗎?怎樣求?

      13、出示教材85頁做一做。讓學生試做。

      14、指名匯報怎樣列式計算的。兩種方法均可。

      ∠2=180°—140°—25°=15°

      ∠2=180°(140°+25°)=15°

      課后反思:

      對于三角形的內角和,學生并不陌生,在平時的做題中已經涉及到了。可是學生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經歷體驗,感悟圖形。從而收獲了經驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

    《三角形的內角和》教學設計3

      【設計理念】

      新課標重視讓學生經歷數學知識的構成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,帶給足夠的時間和空間讓學生經歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經歷知識的構成過程。這樣,學生不僅僅能夠掌握知識,而且能夠積累探究數學問題的活動經驗,發(fā)展空間觀念和推理潛力。

      【教材資料】

      新人教版義務教育課程標準實驗教科書四年級下冊數學第67頁例6、“做一做”及練習了十六的第1、2、3題。

      【教材分析】

      三角形的內角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習了多邊形的內角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現,安排兩次實驗操作活動。教材呈現教學資料時,不但重視體現知識的構成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活組織教學帶給了清晰的思路。概念的構成沒有直接給出結論,而是透過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內角和是180°。

      【學情分析】

      1、在學習了本課時,學生已經有了探索三角形內角和的知識基礎:明白直角和平角的度數,會用量角器度量角的度數;認識長方形、正方形,明白他們的四個角都是直角;認識了三角形,明白了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經明白了等腰三角形和正三角形。

      2、已經有一部分學生明白了三角形內角和是180°,只是知其然而不知所以然。

      【教學目標】

      1、透過“量、剪、拼”等活動發(fā)現、驗證三角形的內角和是180°,并能運用這個知識解決一些簡單的問題。

      2、在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作潛力,積累基本的數學活動經驗,發(fā)展空間觀念和推理潛力。

      3、在參與數學學習了活動的過程中,獲得成功的體驗,感受數學探究的'嚴謹與樂趣。

      【教學重點】

      探索發(fā)現、驗證“三角形內角和是180°”,并運用這個知識解決實際問題。

      【教學難點】

      驗證“三角形的內角和是180°”。

      【教(學)具準備】

      多媒體課件;銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

      【教學步驟】

      一、復習了舊知引出課題

      1、你已經明白有關三角形的哪些知識?

      2、出示課題:三角形的內角和

      【設計意圖:也自然導入新課。】

      二、提出問題引發(fā)猜想

      1、提出問題:看到這個課題,你有什么問題想問的?

      預設:

      (1)三角形的內角指的是哪些角?

      (2)三角形的內角和是什么意思?

      (3)三角形的內角一共是多少度?

      2、引發(fā)猜想

      猜一猜:三角形的內角和是多少度?你是怎樣猜的?

      【設計意圖:提出一個問題比解決一個問題更重要。課始在復習了三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習了自己想研究的資料,無疑激發(fā)了學生的學習了興趣,培養(yǎng)了學生的問題意識。由于學生在平時使用三角板時已經若隱若現地有了特殊的直角三角形的內角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內角和是多少,并說說是怎樣猜的,以激發(fā)學生已有知識經驗,并體會到猜想要合理且有根據,同時也為推理驗證的引出作必要的鋪墊。】

      三、操作驗證構成結論

      1、交流驗證方法:

      (1)用什么方法證明三角形的內角和是180度呢?

      預設:

      ①量算法

      ②剪拼法

      ③折拼法等

      (2)三角形的個數有無數個,驗證哪些三角形能夠代表所有的三角形?我們的操作過程怎樣分工才會做到省時又高效?

      2、動手驗證

      3、全班匯報交流

      4、小結:剛才透過大家的動手操作驗證了三角形的內角和是180°度。但動手操作會存在必須的誤差,我們的結論也可能存在偏差。

      5、方法拓展

      推理驗證:用直角三角形的內角和來證明其他三角形內角和是180°的方法。

      6、構成結論:任意三角形的內角和是180°。

      【設計意圖:《標準》指出:“教師應激發(fā)學生的用心性,向學生帶給充分從事數學活動的機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”猜測后先獨立思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現了三角形內角和是180°這個結論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數學活動經驗,為后續(xù)的學習了帶給了經驗支撐。】

      四、應用結論解決問題

      1、鞏固新知:想一想,算一算。

      2、解決問題:等腰三角形風箏的頂角是多少度?

      3、辨析訓練,完善結論。

      五、課堂總結,歸納研究方法

      這天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?

      六、課后延伸:

      用這天所學的方法繼續(xù)研究四邊形的內角和。

      七、板書設計:

      三角形的內角和

      猜測:三角形的內角和是180°?

      驗證:量拼

      結論:任意三角形的內角和是180°

    《三角形的內角和》教學設計4

      教學內容:

      義務教育課程表準教科書數學(人教版)四年級下冊85頁.例題5.

      教學目標:

      1.讓學生親自動手,通過量、剪、拼等活動發(fā)現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

      2.讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

      3.使學生體驗成功的喜悅,激發(fā)學生主動學習數學的興趣。

      教學重點:

      讓學生經歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過程。

      教學準備:

      多媒體課件、學具。

      教學過程:

      一、激趣引入

      (一)認識三角形內角

      1.我們已經認識了三角形,什么是三角形?誰能說三角形按角分類,可以分成哪幾類?(學生回答問題.)

      2.請看屏幕(課件演示三條線段圍成三角形的過程)。

      三條線段圍成三角形后,在三角形內形成了三個角,(課件分別出現三個角的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。

      (二)設疑,激發(fā)學生探究新知的心理

      1.請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現問題、探究問題。)

      學生安要求畫三角形.

      2.問:有誰畫出來啦?

      (課件演示):是不是畫成這個樣子了?只能畫兩個直角。問題出現在哪兒呢?這一定有什么奧秘?那就讓我們一起來研究吧!

      二、動手操作,探究新知

      (一)研究特殊三角形的內角和

      1.請看屏幕。(播放課件)熟悉這副三角板嗎?(課件閃動其中的一塊三角板)

      學生回答:90°、45°、45°。(課件演示:由三角板抽象出三角形)

      這個三角形各角的.度數。它們的和是多少?

      學生回答:是180°。

      追問:你是怎樣知道的?

      生:90°+45°+45°=180°。

      把三角形三個內角的度數合起來就叫三角形的內角和。

      板題:三角形內角和

      2.(課件演示另一塊三角板的各角的度數。)這個呢?它的內角和是多少度呢?

      90°+60°+30°=180°。

      3.從剛才兩個三角形內角和的計算中,你發(fā)現什么?

      這兩個三角形的內角和都是180°。這兩個三角形都是直角三角形,并且是特殊的三角形。

      (二)研究一般三角形內角和

      1.猜一猜。

      猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。

      2.操作、驗證一般三角形內角和是180°。

      (1)小組合作、進行探究。

      1.所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?那就請四人小組共同研究吧!

      2.每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,小組活動的要求如下:課件顯示

      組長負責填寫表格,組員每人負責量一個三角形的每個內角,并記錄下來,最后算出這個三角形的內角和,把結果告訴組長.

      量一量,完成表格.

      三角形的名稱

      內角和的度數

      銳角三角形

      直角三角形

      (2)小組匯報結果。

      請各小組匯報探究結果。

      (三)繼續(xù)探究

      沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

      引導學生用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。

      1.用拼合的方法驗證。

      小組內完成,活動的要求同上.

      拼一拼,完成表格.

      三角形的名稱

      是否可以拼成平角

      銳角三角形

      直角三角形

      對角三角形

      2.匯報驗證結果。

      先驗證銳角三角形,我們得出什么結論?

      (銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。

      直角三角形的內角和也是180°。

      鈍角三角形的內角和還是180°)。

      3.課件演示驗證結果。

      請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

      我們可以得出一個怎樣的結論?

      (三角形的內角和是180°。)

      (教師板書:三角形的內角和是180°學生齊讀一遍。)

      為什么用測量計算的方法不能得到統(tǒng)一的結果呢?

      (量的不準。有的量角器有誤差。)

      三、解決疑問。

      現在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)

      (因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)

      在一個三角形中,有沒有可能有兩個鈍角呢?

      (不可能。)

      追問:為什么?

      (因為兩個銳角和已經超過了180°。)

      問:那有沒有可能有兩個銳角呢?

      (有,在一個三角形中最少有兩個內角是銳角。)

      四、應用三角形的內角和解決問題。

      1.看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)

      2.85頁做一做:

      在一個三角形中,∠1=140度,∠3=35度,求∠2的度數.

      3.88頁第9.10題(數學信息較為隱藏和生活中的實際問題)

      4.89頁16題.思考題

      板書設計:

      三角形內角和

      180°180°180°

      三角形內角和180°

    《三角形的內角和》教學設計5

      教學目標:

      1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現三角形三個內角的度數和等于180°。

      2、已知三角形兩個角的度數,會求出第三個角的度數。

      3、經歷三角形內角和的研究方法,感受數學研究方法。

      教學重點:

      1、探索和發(fā)現三角形三個內角的度數和等于180°。

      2、已知三角形兩個角的度數,會求出第三個角的度數。

      教學難點:掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數學思想探究三角形內角和。

      教學用具:表格、課件。

      學具準備:各種三角形、剪刀、量角器。

      一、創(chuàng)設情境揭示課題。

      1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內角和一定比你大。”小三角形很不甘心地說:“我有一個鈍角,我的內角和一定比你大。”。誰說得有道理呢?今天讓我們來做一回裁判吧。

      生1:大三角形大(個子大)

      生2:小三角形大(有鈍角)

      (教師不做判斷,讓學生帶著問題進入新課)

      2、什么是三角形的內角和?(板書:內角和)

      講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數加起來就是三角形的`內角和。

      二、自主探究,合作交流。

      (一)提出問題:

      1、你認為誰說得對?你是怎么想的?

      2、你有什么辦法可以比較一下這兩個三角形的內角和呢?

      生1:用量角器量一量三個內角各是多少度,把它們加起來,再比較。

      生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

      生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

      (二)探索與發(fā)現

      活動一:量一量

      (1)①了解活動要求:(屏幕顯示)

      A、在練習本上畫一個三角形,量一量三角形三個內角的度數并標注。(測量時要認真,力求準確)

      B、把測量結果記錄在表格中,并計算三角形內角和。

      C、討論:從剛才的測量和計算結果中,你發(fā)現了什么?

      (引導生回顧活動要求)

      ②小組合作。

      ③匯報交流。

      你們測量了幾個三角形?它們的內角和分別是多少?從測量和計算結果中你們發(fā)現了什么?

      (引導學生發(fā)現每個三角形的三個內角和都在180°,左右。)

      (2)提出猜想

      剛才我們通過測量和計算發(fā)現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書:猜測)

      活動二:拼一拼,驗證猜想

      這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

      引導:180°,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?

      (1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是180°)。

      (2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?

      (3)分組匯報,討論質疑

      (4)課件演示,驗證結果

      活動三:折一折

      師生一起活動,教師先讓學生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

      (把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與角1的頂點互相重合,也證明了三角形內角和等于180°,)。

      討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

      提問:還有沒有其它的方法?

      3、回顧兩種方法,歸納總結,得出結論。

      (1)引導學生得出結論。

      孩子們,三角形內角和到底等于多少度呢?”

      學生答:“180°!”

      (2)總結方法,齊讀結論

      我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們?yōu)樽约旱某晒恼疲↓R讀結論。(板書:得到結論)

      (3)解釋測量誤差

      為什么我們剛才通過測量,計算出來的三角形內角和不是180°,呢?

      那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內角和就等于180°

      (三)回顧問題:

      現在你知道這兩個三角形誰說得對了嗎?(都不對!)

      為什么?請大家一起,自信肯定的告訴我。

      生:因為三角形內角和等于1800180°。(齊讀)

      三、鞏固深化,加深理解。

      1、試一試:數學書28頁第3題

      ∠A=180°-90°-30°

      2、練一練:數學書29頁第一題(生獨立解決)

      ∠A=180°-75°-28°

      3、小法官:數學書29頁第二題

      四、回顧課堂,滲透數學方法。

      1、總結:猜想—驗證—歸納—應用的數學方法。

      2、介紹:三角形內角和等于180度這個結論的由來;數學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

      3、課堂延伸活動:探索——多邊形內角和

      板書設計:

      探索與發(fā)現(一)

      三角形內角和等于180°

    《三角形的內角和》教學設計6

      教學目標:

      1、掌握三角形內角和是180°,并能應用這一規(guī)律解決一些實際問題。

      2、讓學生經歷“猜想、動手操作、直觀感知、探索、歸納、應用”等知識形成的過程,掌握“轉化”的數學思想方法,培養(yǎng)學生動手實踐能力,發(fā)展學生的空間思維能力。

      3、在活動中,讓學生體驗主動探究數學規(guī)律的樂趣,體驗數學的價值,激發(fā)學生學習數學的熱情,同時使學生養(yǎng)成獨立思考的好習慣。

      教學重點:

      讓學生經歷“三角形內角和是180度”這一知識的形成、發(fā)展和應用的全過程。

      教學難點:

      三角形內角和的探索與驗證。

      教學準備:

      量角器 各種類型的三角形(硬的紙板) 三角板

      教學過程:

      一、設疑激趣,導入新課

      師:今天老師給大家?guī)砹艘晃慌笥?課件)出示三角形,

      師:對于三角形你有哪些認識與了解。

      生:三角形有銳角三角形、直角三角形、鈍角三角形

      生:由三條線段圍成的平面圖形叫三角形。

      師:介紹內角、內角和

      三角形中每兩條邊組成的角叫做三角形的內角。

      師:三角形有幾個內角。

      生:三個。

      師:這三個角的和,就叫做三角形的內角和。你知道三角形內角和是多少度?

      生1:我通過直角三角板知道的

      生2:我通過長方形中四個角都是直角,是360度,三角形是長方形的一半,所以是180度

      生3:我預習了,三角形內角和就是180度)

      師:是不是向他們說的一樣,所有的三角形內角和都是180度呢?

      二、自主探索,進行驗證

      師:你打算怎樣驗證呢?

      生1用量角器量出每個角的度數,再加一加看看是不是180度

      生2:把三角形撕下來

      師:怎么撕?象這樣撕嗎?(作亂撕狀),能說的詳細些具體些嗎?

      生2:(補充),把三個角撕下來,拼在一起,看能不能拼成一個平角

      生3:把三個角順次畫下來也可以

      生4:拼一拼的`方法

      師:好!同學們想出了這么多辦法,下面就用你喜歡的方法驗證

      師:CAI多媒體課件展示操作要求:

      合作探究:

      1、每四人一組,每組至少選兩個三角形,用你喜歡的方法驗證

      2、看那個小組驗證的方法新、方法多

      師:在巡視,并進行個別操作指導

      三、交流探索的方法和結果

      孩子們探索的方法可能有三個:

      生1:一是用量角器量各個角,然后再算出三角形中三個角的度數和,用這種方法求的結果可能是180度也可能比180度小一些,也可能比180度大一些。

      生2:二是用轉化法,把三角形中三個角剪下來,拼在一起成為一個平角,由此得出三角形中三個角的和是180度。

      生3:三是折一折,把三個角折在一起,折在一起成為一個平角,由此得出三角形中三個角的和是180度。

      四、歸納總結,體驗成功

      師:孩子們,三角形中三個角的度數和到底是多少度呢?

      生:180度。

      五、拓展應用

      1、基礎練習

      2、等邊三角形、等腰三角形、直角三角形

      六、課堂小結

      談一談自己的學習收獲。

    《三角形的內角和》教學設計7

      教學內容:本節(jié)課的教學內容是義務教育課程標準實驗教科書數學四年級下冊第五單位的第四課時《三角形的內角和》,主要內容是:驗證三角形的內角和是180°等。

      教學內容分析:三角形的內角和是180是三角形的一個重要性質,它有助于學生理解三角形的三個內角之間的關系,也是進一步學習的基礎。

      教學對象分析:作為四年級的學生已有一定的生活經驗,在平時的生活中已經接觸到三角形,在尊重學生已有的知識的基礎上和利用他們已掌握的學習方法,教師把課堂教學組織生動、活潑,突出知識性、趣味性和生活性,使學生能在輕松愉快的氣氛中學習。

      教學目標:

      1、知識目標:學生通過量、剪、拼、擺等操作學具活動,找到新舊知識之間的聯系,主動掌握三角形內角和是180°,并運用所學知識解決簡單的實際問題。

      2、能力目標:培養(yǎng)學生的觀察、歸納、概括能力和初步的空間想象力。

      3、情感目標:培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手和歸納中,感受到理性的美。

      教學重點:理解并掌握三角形的內角和是180°。

      教學難點:驗證所有三角形的內角之和都是180°。

      教具準備:多媒體課件、各種三角形等。

      學具準備:三角形、剪刀、量角器等。

      教學過程:

      一、出示課題,復習舊知

      1、認識三角形的內角。

      (1)復習三角形的概念。

      (2)介紹三角形的“內角”。

      2、理解三角形的內角“和”。

      【設計理念】通過復習三角形的概念的過程,不僅可以鞏固學生的舊知識而且可以為新知識教學提供知識鋪墊。

      二、動手操作,探究新知

      1、通過預習,認識結論,提出疑問

      2、驗證三角形的內角和

      (1)用“量一量、算一算”的方法進行驗證

      ①匯報測量結果

      ②產生疑問:為什么結果不統(tǒng)一?

      ③解決疑問:因為存在測量誤差。

      (2)用“剪一剪、拼一拼”的方法進行驗證

      ①指導剪法。

      ①分別拼:銳角三角形、直角三角形、鈍角三角形。

      ③驗證得出:三角形的內角和是180°。

      (3)用“折一折”的方法進行驗證

      ①指導折法。

      ①分別折:銳角三角形、直角三角形、鈍角三角形。

      ③再次驗證得出:三角形的內角和是180°。

      3、看書質疑

      【設計理念】此過程采用直觀教學手段。通過讓學生動手量、拼等直觀演示操作直接作用于學生的`感官,激活學生的思維,有助于學生的認識由具體到抽象的轉化。從而明確三角形的內角和是180°。

      三、實踐應用,解決問題:

      1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數。

      2、求出三角形各個角的度數。(圖略)

      3、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是

      70°,它的頂角是多少度?

      4、根據三角形的內角和是180°,你能求出下面的四邊形和正六邊形的內角和嗎?(圖略)

      5、數學游戲。

      【設計理念】練習設計的優(yōu)化是優(yōu)化教學過程的一個重要方向,所以在新授后的鞏固練習中注意設計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學生牢固掌握新知。

      四、總結全課、延伸知識:

      1、今天你們學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎樣?

      2、知識延伸:給學生介紹一種更科學的驗證方法——轉化。

      【設計理念】課堂總結不僅要關注學生學會了什么,更要關注用什么方法學,要有意識的促進學生反思。

      板書設計: 三角形的內角和是180°

      方法:①量一量 拼角(略)

      ②拼一拼

      ③折一折

      【設計理念】此板書設計我力求簡明扼要、布局合理、條理分明,體現了簡潔美和形象美,把知識的重點充分地展現在學生的眼前,起了畫龍點睛的作用。

    《三角形的內角和》教學設計8

      知識與技能

      1、通過小組合作,運用直觀操作的方法,探索并發(fā)現三角形內角和等于180。能應用三角形內角和的性質解決一些簡單問題。

      2、經歷親自動手實踐、探索三角形內角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數學思想方法,提高動手操作能力和數學思考能力。

      情感態(tài)度與價值觀

      3、使學生在數學活動中獲得成功的體驗,感受探索數學規(guī)律的樂趣。培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手實踐和歸納中,感受理性的美。

      教學重點:

      1、探索和發(fā)現三角形三個內角和的度數和等于180o。

      2、已知三角形的兩個角的度數,會求出第三個角的度數。

      教學難點:

      已知三角形的兩個角的度數,會求出第三個角的度數。

      方法與過程

      教法:主動探究法、實驗操作法。

      學法:小組合作交流法

      教學準備:小黑板、學生、老師準備幾個形狀不同的三角形、量角器。

      教學課時:1課時

      教學過程

      一、預習檢查

      說一說在預習課中操作的感受,應注意哪些問題,三角形的內角和等于多少度? 組內交流訂正。

      二、情景導入呈現目標

      故事引入。一天,大三角形對小三角形說:“我的個頭大,所以我的內角和一定比你的大。”小三角形很不甘心地說:“是這樣的嗎?”揭示課題,出示目標。產生質疑,引入新課。

      三、探究新知 

      自主學習

      1、活動一、比一比2、活動二、量一量

      (1)什么是內角?

      (2)如何得到一個三角形的內角和?

      (3)小組活動,每組同學分別畫出大小,形狀不同的若干個三角形。分別量出三個內角的度數,并求出它們的和。

      (4)填寫小組活動記錄表。發(fā)現大小,形狀不同的每個三角形,三個內角的度數和都接近度。

      3、說一說,做一做。

      (1)我們把三個角撕下來,再拼在一起,看一看會是怎樣的。

      (2)把三個角折疊在一起,,三個角在一條直線上。從而得到三角形三個內角和等于()度。

      四、當堂訓練(小黑板出示內容)

      1、三角形的內角和是()°,一個等腰三角形,它的一個底角是26°,它的頂角是()。

      2、長5厘米,8厘米,()厘米的三根小棒不能圍成一個三角形。

      3、三角形具有()性。

      4、一個三角形中有一個角是45°,另一個角是它的2倍,第三個角是(),這是一個()三角形。

      5、按角的大小,三角形可以分為()三角形、()三角形、()三角形。

      6、交流學案第三題。 先獨立做,最后組內交流。

      五、點撥升華

      任意三角形三個角的度數和等于180度。獨立思索小組交流總結方法教師點撥。

      六、課堂總結

      通過這節(jié)課的學習,你有什么新的'收獲或者還有什么疑問?先小組內說一說,最后班上交流。

      七、拓展提高

      媽媽給淘氣買了一個等腰三角形的風箏。它的頂角是40°,它的一底角是多少? 先獨立做,最后組內交流。

      板書設計:

      三角形的內角和

      測量三個角的度數求和:結論:

      教學反思:三角形內角和等于180°,對于大多數同學來說并不是新知識。因為在此之前學生已經運用過這一知識。因此,我覺得這一堂課的重點不是讓學生記住這一結論,也不是怎樣運用它去解結問題。而是讓學生證明這一結論,即要讓學生親歷探索過程并在探索中驗證。在教學中,通過豐富的材料讓學生動手操作,通過量、撕拼、折拼等實驗活動,讓學生得到的不僅僅是三角形內角和的知識,更重要的是學到了怎樣由已知知識探索未知的思維方式與方法,激發(fā)了他們主動探索知識的欲望。通過多種實驗進行操作驗證也讓學生明白了只要善于思考,善于動手就能找到解決問題的方法。

      當然,在教學中也還有一些不順利的地方,比如一些動手能力差的學生未能及時跟進,對于方法不對的學生未能及時指導和幫助等。但是本堂課采用這樣的方式展開教學是學生喜歡的也是有成效的。

    《三角形的內角和》教學設計9

      一、教學目標:

      1、理解掌握三角形內角和是180°,并運用這一性質解決一些簡單的問題。

      2、通過直觀操作的方法,引導學生探索并發(fā)現三角形內角和等于180°,在實驗活動中,體驗探索的過程和方法。

      3、在探索和發(fā)現三角形內角和的過程中獲得成功的體驗。

      二、教學重、難點:

      重點:探索并發(fā)現三角形內角和等于180°。

      難點:運用三角形內角和等于180°的性質解決一些實際問題。

      教具:課件、三角形若干。

      學具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

      三、教學過程

      (一)創(chuàng)設情境,導入新課

      我們已經學過了三角形的知識,我們來復習一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內角,而這三個內角的和就是這個三角形的內角和。那么誰來說一說什么是三角形的內角和?三角形有大有小,形狀也各不相同,那么它們的內角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細聽它們都說了什么?

      教師放課件。

      課件內容說明:一個大的直角三角形說:“我的個頭大,我的內角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

      都聽清它們在爭論什么嗎?(它們在爭論誰的內角和大。)誰能說一說你的想法?(學生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內角和”。

      (板書課題:三角形內角和)

      (二)自主探究,發(fā)現規(guī)律

      1、探究三角形內角和的特點。

      (1)檢查作業(yè),并提出要求:

      昨天老師讓每位學生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數,都完成了嗎?拿出來吧,一會我們要算出三角形的內角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。

      小組活動記錄表

      小組成員的姓名

      三角形的形狀

      每個內角的度數

      三角形內角的和

      (要求:填完表后,請小組成員仔細觀察你發(fā)現了什么?)

      ②小組合作。

      會使用表格了嗎?下面我們就以小組為單位,按照要求把結果填在小組長手中的表格內。

      各組長進行匯報。發(fā)現了三角形的內角和都是180°左右。

      師:實際上,三角形三個內角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數據。

      2、驗證推測。

      那么同學們有沒有什么辦法知道三角形的內角和就是180°呢?大家可以討論一下,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的'三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學們在下面操作進行體驗,再用課件演示把三個內角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學生也動手試一試。

      通過我們的驗證我們可以得出三角形的內角和是180°。

      板書:(三角形內角和等于180°。)

      3、師談話:三個三角形討論的問題現在能解決了嗎?你現在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內角和是180°做系統(tǒng)的整理。)

      4、同學們還有什么疑問嗎?大家想一想我們知道了三角形內角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)

      出示書28頁,試一試第3題,并講解。

      說明:在直角三角形中一個銳角等于30°,求另一個銳角。

      生獨立做,再訂正格式、以及強調不要忘記寫度。

      小結:同學們有沒有不明白的地方?如果沒有我們來做練習。

      (三)鞏固練習,拓展應用

      1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

      完成,并填在書上。講一講直角三角形還有什么解法。

      2、出示29頁第2題。

      說明:一個鈍角三角形說:我的兩個銳角之和大于90°。

      一個直角三角形說:我的兩個銳角之和正好等于90°。讓學生判斷。

      3、畫一畫:

      出示四邊形和六邊形。運用三角形內角和是180°計算出各自的內角和。你能推算出多邊形的內角和嗎?

      三角形內角和180度是科學家帕斯卡12歲時發(fā)現的。我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現。

      (四)課堂總結

      讓學生說說在這節(jié)課上的收獲!

    《三角形的內角和》教學設計10

      【教材內容】

      北京市義務教育課程改革實驗教材(北京版)第九冊數學

      【教材分析】

      《三角形內角和》是北京市義務教育課程改革實驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學生已經掌握了三角形的穩(wěn)定性和三角形的三邊關系相關知識后對三角形的進一步研究,探索三角形的內角和等于180°。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現三角形的內角和是180°。讓學生在自主探索中發(fā)現三角形的又一特性,更加深入的培養(yǎng)了學生的空間觀念。

      【學生分析】

      在四年級學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

      【教學目標】

      1、通過量、拼、折、剪等方法探索和發(fā)現三角形的內角和等于180°掌握并會應用這一規(guī)律解決實際的問題。

      2、通過討論、爭辯、操作、推理發(fā)展學生動手操作、觀察比較和抽象概括的能力。

      3、使學生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。

      【教學重點】

      讓學生經歷“三角形內角和是180度”這一知識的形成發(fā)展和應用的全過程。

      【教學難點】

      能利用學到的知識進行合情的推理。

      【教具學具準備】

      課件、各種各樣的直角三角形、長方形、剪刀、量角器、數學紙

      【教學過程】

      一、學具三角板,引入新課

      1、(出示兩個直角三角板),問:這是咱們同學非常熟悉的一種學習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)

      2、顧名思義一個三角形都有幾個角呀?(三個)

      3、認識內角

      (1)在三角形的內部相臨兩條邊之間所夾的角叫做三角形的內角。(課件閃爍∠1)(板書:三角形內角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?

      (2)這個三角形內有幾個內角?(三個)這個呢?(三個)

      (設計意圖:由學生最熟悉的三角板引入新課,激發(fā)學生興趣的同時為后面的學習做準備)

      二、動手操作,探索新知

      (一)直角三角形內角和

      ⅰ、特殊直角三角形內角和

      1、根據我們以往對三角板的了解,你還記得每個三角形上每個內角各是多少度嗎?(生說度數,師課件上在相應角出示度數:①90°、60°、30°,②90°、45°、45°)。

      2、觀察這兩個三角形的度數,你有什么發(fā)現?

      生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)

      生2:我還發(fā)現他們內角加起來是180度。師:他真會觀察,你發(fā)現了嗎?快算一算是不是他說的那樣?

      (課件):(1)90°+60°+30°=180°)

      那么另一個三角板的三個內角的總度數是多少?

      (生回答,師課件:(2)90°+45°+45°=180)

      3、你指的哪是180度?(生:這三個內角合起來是180度)

      4、在三角形內三個內角的總度數又簡稱為三角形的內角和。(板書:和)

      5、這個直角三角形的內角和是多少度?另一個呢?

      6、你還記得180度是我們學過的是什么角嗎?(平角)趕快在你的數學紙上畫一個平角。

      (師出示一個平角)問:平角是什么樣的?

      7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內角和就組成這樣的一個角呀。

      ⅱ、一般直角三角形內角和

      1、老師還為你們準備了各種各樣的直角三角形,快拿出來看看。

      2、剛才的'那兩個直角三角形的內角和是180度,你們手中的直角三角形的內角和是多少度呢?老師還為你們準備了一些學具,你能充分地利用這些學具,想辦法來研究直角三角形的內角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。

      (1)小組活動(2)匯報

      哪個組愿意把你們的研究成果向大家展示?每個小組派代表發(fā)言。(在實物展臺上演示)

      三角形的種類

      驗證方法

      驗證結果

      *“量一量”的方法:

      板書:有一點誤差的度數

      *“剪一剪”的方法:

      我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)

      現在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)

      你們的直角三角形的內角和拼成的是平角嗎?也就是內角和是多少度?

      還有其他方法嗎?

      *“折一折”的方法:

      預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?

      學生演示(課件:折的過程)

      ②學生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的,最后都是把三個內角拼成平角。(板書:折)

      *推理:

      你們有用長方形來研究直角三角形內角和度數的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)

      這種方法就叫做推理,一般到中學以后我們經常會用到。(板書:推理)

      3、小結

      (1)通過我們剛才的研究,我們發(fā)現直角三角形的內角和都是多少度呀?(板書:內角和是180°)剛才我們在測量的時候為什么會出現179度183度呢?看來只要是測量不可避免的會產生誤差。

      (2)在我們三角形的世界中,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)

      (設計意圖:引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。)

      (二)、銳角三角形、鈍角三角形的內角和

      1、請你們任意畫一個鈍角三角形,一個銳角三角形

      2、直角三角形的內角和是180度,銳角三角形、鈍角三角形的內角和又是多少度呢?你能利用我們剛才學到的知識來研究你所畫的三角形的內角和是多少度嗎?快試試,可以同桌討論。(學生操作,匯報,課件演示)我們是用什么方法來研究的?

      3、學生模仿老師操作說理

      4、由此我們得到了銳角三角形的內角和是多少度?鈍角三角形的內角和呢?我們就可以說所有三角形的內角和都是180度。

      師:這也是三角形的一個特性,現在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內角和是180°)。

      (設計意圖:引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。)

      三、鞏固新知,拓展應用

      我們就用三角形的這一特性來解決一些問題

      1、兩個三角形拼成大三角形

      (1)每個三角形的內角和都是少度?

      (2)(課件把兩個三角形拼在一起)它的內角和是多少度?(這時學生答案又出現了180°和360°兩種。)師:究竟誰對呢

      2、一個三角形去掉一部分

      (1)這是一個三角形,他的內角和是多少度?我從中剪去一個三角形他的內角和是多少度?

      再剪去一個三角形呢?(課件演示)

      你們看這兩個三角形他們的大小、形狀都怎么樣?但內角和都是180度,看來三角形的內角和的度數和他的大小形狀都無關。

      (2)我再把這個三角形剪去一部分,它的內角和是多少度?(課件:剪成四邊形)

      你能利用我們三角形的內角和是180度來研究這個四邊形的內角和是多少度嗎?

      (3)如果五邊形,你還能求出他的度數嗎?

      (設計意圖:充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。)

      四、總結評價、延伸知識

      通過這節(jié)課的學習研究你掌握了哪些知識?我們是怎樣研究的呢?

      師:先研究的是特殊直角三角形的內角和是180度,接著通過量、拼等方法得到了直角三角形的內角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內角和是180度。

      (設計意圖:幫助學生梳理本節(jié)課的知識脈絡。)

    《三角形的內角和》教學設計11

      微課作品介紹本微課是蘇教版小學數學四年級下冊《三角形內角和》的課前先學指導,學生在家觀看視頻內容,同時結合學習任務單,在視頻的指導下通過猜、量、算、剪、拼等方法探索三角形的內角和是180度。學生在課前利用視頻完成學習任務單,然后到學校課堂中和老師、同學進行交流,再進一步提升。

      教學需求分析適用對象分析該微課的適用對象是蘇教版四年級下學期的小學生,學生應認識三角形的基本特征,學習過角和角的度量,知道平角是180度。具備了一定的動手操作能力和數學思維能力。

      學習內容分析該微課讓學生發(fā)現、驗證三角形的內角和是180度的結論。這部分內容是在學生認識了三角形的基本特征和三邊的關系后,三角形分類前學習的。這在蘇教版中和原來的教材不同,放在這里是因為三角形內角和是學生進一步學習和探究三角形分類方法的重要前提。學生知道了三角形的內角和是180度,對三角形分類及命名的方法,才能知其然,還能知其所以然。

      教學目標分析:

      1、通過學生的實際操作,理解并驗證三角形的內角和等于180°,并能夠運用結論解決簡單的實際問題;

      2、使學生通過觀察、實驗,經歷猜想與驗證三角形內角和的探索過程,在活動中發(fā)展學生的空間觀念和推理能力。

      3、已經有不少學生知道了三角形內角和是180度,,但卻不知道怎樣才能得出這個結論,因此學生在學習時的主要目標是驗證三角形的內角和是180度。

      教學過程設計本微課教學過程:

      一、明確多邊形的內角、內角和概念。

      首先要明確概念,才好繼續(xù)研究。內角、內角和以前學生沒有學過,還是有必要給學生明確的。

      二、探索三角尺的內角和,猜想三角形的內角和。

      從學生熟悉的三角板開始計算三角板的內角和,引發(fā)學生猜想,三角形的內角和是多少。

      三、驗證三角形內角和是否為180°。

      驗證分為三個層次:首先是量教材提供的三角形,算出內角和,可能會有誤差。其次把三角形三個內角拼在一起,拼成是平角180度。最后自己任意畫一個三角形剪下來,拼一拼,得出結論。讓學生經歷由特殊到一般的認知過程。

      四、拓展延伸,探究梯形、平行四邊形和六邊形內角和。

      由三角形的內角和,學生自然就會想到已學過的梯形、平行四邊形和六邊形內角和是多少呢。教師留下問題讓學有余力的學生進一步去探索。

      五、自主學習檢測

      學生觀看完了視頻是否學會了,是需要檢測的。學生通過做完自主檢測后進行校對,檢驗自己所學。

      學習指導本微視頻應配合下面的學習任務單共同使用,在觀看視頻時,根據視頻提示隨時暫停視頻依次完成任務單。

      自主學習前準備:

      請在自主學習前閱讀學習任務單的學習指南,并準備好數學書、一副三角尺、量角器、剪刀、鉛筆等學習用具。

      自主學習任務單:

      通過觀看教學資源自學,完成下列學習任務:

      任務一:明確多邊形的內角、內角和概念

      1、你認識下面的圖形嗎?他們各有幾個角,請在圖中標出來。

      2、你剛才標出的角,又叫做每個圖形的()。

      3、如果把一個圖形所有的內角的度數加起來,所得的總和就是這個圖形的()。

      4、你知道圖中長方形和正方形的`內角和是多少度嗎?你是怎么知道的?

      長方形內角和正方形內角和

      任務二:探索三角尺的內角和,猜想三角形的內角和。

      1、請拿出一副三角尺,你知道每塊三角尺上各個角的度數?在圖上標出來。

      2、算一算,每個三角尺3個內角的和是多少度。

      3、根據你剛才的計算結果,你能猜想一下,任意一個三角形它的內角和的度數呢?

      任務三:驗證任意三角形內角和是否為180°

      1、請從數學書本第113頁剪下3個三角形,用量角器量出每個三角形3個內角的度數。

      算一算,每個三角形3個內角的和是多少度。

      2還可以用什么辦法來驗證剪下的這3個三角形的內角和等于180度?(把你的驗證方法展示在下面。)如果你想不出來請看下面的提示。

      溫馨提示:平角正好是180°,這三個內角能正好拼成一個平角嗎?

      3、自己任意畫一個三角形,先剪下來,再拼一拼。

      4、你發(fā)現了什么?寫在下面。

      5、請你回顧一下我們研究三角形形內角和是180度的過程?簡單的寫下來。

      任務四:拓展延伸

      任務一中還有梯形、平行四邊形和六邊形,如果你有興趣,你可以研究他們的內角和。

      任務五:自主學習檢測

      1、右邊三角形中,∠1=75°,∠2=40°,∠3=()°

      2、第3個三角形還可以怎樣計算,哪種更簡便?

      3、一塊三角尺的內角和是180°,用兩塊完全一樣的三角尺拼成一個三角形,拼成的三角形內角和是多少度?

      4、用一張長方形紙折一折,填一填

      配套學習資料蘇教版小學數學四年級下冊教材

      制作技術介紹Camtasia Studio軟件制作、PPT。

    《三角形的內角和》教學設計12

      學情分析:

      學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

      教學目標:

      1、知識與技能:通過操作活動探索發(fā)現和驗證“三角形的內角和是180度”的規(guī)律。

      2、過程與方法:通過量一量、剪一剪、拼一拼,培養(yǎng)學生的合作能力、動手實踐能力,并運用新知識解決問題的能力。

      3、情感態(tài)度:使學生體驗數學學習成功的喜悅,激發(fā)學生主動學習數學的興趣。

      教學重點:

      探索發(fā)現和驗證三角形的內角和是180度。

      教學難點:

      對不同探究方法的指導和學生對規(guī)律的靈活應用。

      教具準備:

      教師準備:多媒體課件、不同類形大小不一的三角形若干個、記錄表

      學生準備:量角器、直尺、剪刀

      教學過程:

      一、激趣導入

      多媒體展示三角形

      出示謎語:形狀似座山,穩(wěn)定性能堅

      三竿首尾連,學問不簡單?????(打一圖形名稱)

      (預設:三角形)

      師:誰能介紹介紹三角形?

      (生1:三角形有三條邊、三個頂點、三個角。

      生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)

      師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)

      師:同學們會畫三角形嗎?請你在練習本上畫一個你喜歡的三角形。

      師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。

      師:今天我們就來研究一下三角形的'內角和。

      二、學習目標

      1、通過動手操作,使學生理解并掌握三角形內角和是180度的結論。

      2、能運用三角形的內角和是180度這一規(guī)律,求三角形中未知角的度數。

      3、培養(yǎng)動手動腦及分析推理能力。

      三、自主學習(展示量角法)

      1.理解三角形的內角、內角和

      (1)板書展示三角形

      師:要想知道什么是三角形的內角和,我們得先知道什么是三角形的內角?(三角形里面的三個角都是三角形的內角。)

      師:你能過來指指嗎?同意嗎?內角有幾個?

      師:為了研究方便,我們把三角形的三個內角分別標上∠1、∠2、∠3。

      師:你能像老師一樣把你的三角形標上∠1、∠2、∠3嗎?

      (2)三角形的內角和

      師:什么是三角形的內角和?

      (三角形三個角的度數的和,就是三角形的內角和,即:∠1+∠2+∠3)

      師:就是把∠1+∠2+∠3加起來。

      師:根據我們以前的經驗,我們怎么知道∠1、∠2、∠3的度數呢?(預設:用量角器量)

      師:請同學們拿出量角器,量一量你畫的三角形的三個內角,并算出他們的和。(4分鐘)

      學生測量(1分40)匯報結果(5人)。

      教師填寫測量匯報單。

      師:觀察匯報的結果,你有什么發(fā)現?(所有三角形內角和度數不一樣、三角形內角和都在180度左右)

      四、合作探究

      師:這是同學們親自測量發(fā)現的,沒有得到統(tǒng)一的結果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現在請你們以小組為單位,拿出三角形來研究研究三角形的內角和到底是多少度。?(8分鐘)(剪拼法)

      1、操作驗證探索三角形內角和的規(guī)律(6分鐘)

      (1)操作驗證:小組合作

      拿出裝有學具的信封[信封里面有老師為學生事先準備的各種類型的三角形若干個(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀

      (老師要給學生充裕的時間,保證學生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

      2、學生匯報

      (1)轉化法:

      生:兩個同樣的直角三角形可以拼成一個長方形,長方形每個直角都是90度,內角和就是360度,所以三角形的內角和就是360度的一半180度。

      師:他們用長方形的內角和來研究今天所學的知識,得到三角形的內角和是180度。

      (2)折拼法

      生:把三角形三個內角分別向下邊折疊,拼成了一個平角,平角是180度,所以三角形的內角和是180度。

      師:他們是用折拼法驗證三角形的內角和是180度(動手能力真強)

      (3)剪拼法

      生:把三角形三個內角撕下來,拼成一個平角,平角是180,所以三角形的內角和是180度。(師:提問怎樣能很快的找到三個角?把他們做上標記。)

      標記上之后再拼一拼,可見標記的方法很科學。(20分鐘)

      3、教師演示

      師:我們再來感受一下怎么驗證三角形的內角和的?

      師:這是什么三角形?把他折一折。

      師:這是什么三角形?我們也可以把他折一折。你有什么發(fā)現?(折完以后都有一個平角,平角是180度,所以三角形的內角和是180度)

      師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內角和。

      師:注意觀察。

      師:演示完畢有什么發(fā)現?(預設這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內角和是180度。

      師:剛剛我們研究了什么三角形。他們的內角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)

      4、演示任意一個三角形的內角和都是180度。

      出示一些三角形,讓學生指出內角和。

      師:你有什么發(fā)現?(無論是什么樣的三角形他的內角和都是180度,與三角形的形狀大小沒有關系。)(板書三角形的內角和是180度。)

      師:那我們再看看剛剛匯報的結果。為什么之前測量的時候并沒有得到這樣得到結果呢?(測量的不夠精確,存在誤差)

      師:如果測量儀器再精密一些,測量的更準確一些都可以得到三角形內角和是180度。現在確定這個結論了嗎?(25分鐘)

      師:除了這節(jié)課大家想到的方法,還有很多方法也能證明三角形的內角和是180°到初中我們還有更嚴密的方法證明三角形的內角和是180°。早在300多年前就有一位法國著名的科學家帕斯卡,他在12歲時就驗證了任何三角形的內角和都是180°

      師:你們能用今天的發(fā)現做一些練習嗎?

      五、測評反饋

      1、判斷。

      (1)直角三角形的兩個銳角的和是90°。

      (2)一個等腰三角形的底角可能是鈍角。

      (3)三角形的內角和都是180°,與三角形的大小無關。

      4、剪一剪。

      把一個三角形紙板沿直線剪一刀,剩下的紙板的內角和是多少度?

      六、課后作業(yè)

      69頁第1題、第3題。

      七、板書設計

    《三角形的內角和》教學設計13

      【教學目標】

      1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現“三角形內角和等于180度”的規(guī)律。

      2、在探究過程中,經歷知識產生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

      3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

      【教學重點】探究發(fā)現和驗證“三角形的內角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。

      【教學難點】對不同探究方法的指導和學生對規(guī)律的靈活應用。

      【教具準備】課件、表格、學生準備不同類型的三角形各一個,量角器。

      【教學過程】

      一、激趣引入。

      1、猜謎語

      師:同學們喜歡猜謎語嗎?

      生:喜歡。

      師:那么,下面老師給大家出個謎語。請聽謎面:

      形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

      生:三角形

      2、介紹三角形按角的分類

      師:真聰明!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

      師分別出示卡片貼于黑板。

      3、激發(fā)學生探知心里

      師:大家會不會畫三角形啊?

      生:會

      師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

      生:試著畫

      師:畫出來沒有?

      生:沒有

      師:畫不出來了,是嗎?

      生:是

      師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關三角形角的知識“三角形內角和”(板書課題)

      二、探究新知。

      1、認識三角形的內角

      看看這三個字,說說看,什么是三角形的內角?

      生:就是三角形里面的角。

      師:三角形有幾個內角啊?

      生:3個。

      師:那么為了研究的時候比較方便,我們把這三個內角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

      師:你知道什么是三角形“內角和”嗎?

      生:三角形里面的角加起來的度數。

      2、研究特殊三角形的內角和

      師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數,那這個三角形的內角和是多少度?

      生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

      師:180°也是我們學習過的什么角?

      生:平角

      師:從剛才兩個三角形的內角和的計算中,你發(fā)現了什么?

      3、研究一般三角形的內角和

      師:猜一猜,其它三角形的內角和是多少度呢?

      生:

      4、操作、驗證

      師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

      要求:

      (1)每4人為一個小組。

      (2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?

      (3)驗證的方法不只一種,同學們要多動動腦子。

      師:好,開始活動!

      師:巡視指導

      師:好!請一組匯報測量結果。

      生:通過測量我們發(fā)現每個三角形的三個內角和都在180度左右。

      師:其實三角形的內角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

      生:我是用撕的方法,把直角三角形三個內角撕下來,拼在一起,拼成一個平角,是180度。

      師:好!非常好!

      師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

      生:展示折一折我是用折的`方法把銳角三角形三個角折在一起,組成一個平角,是180°。

      師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多媒體展示)

      現在老師問同學們,三角形的內角和是多少?

      生:180度。

      師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內角和都是180°。板書:三角形內角和等于180度。現在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現:“三角形的內角和是180°”。

      三、解決疑問

      師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

      生:沒有

      師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

      生:兩個直角是180度,沒有第三個角了。

      師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

      生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

      師:學會了知識,我們就要懂得去運用。

      四、鞏固提高。

      1、填空。

      (1)三角形的內角和是()度。

      (2)一個三角形的兩個內角分別是80°和75°,它的另一個角是()。

      2、求下面各角的度數。

      (1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

      (2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

      3、判斷每組中的三個角是不是同一個三角形中的三個內角。

      (1)80° 95° 5°( )

      (2)60° 70° 90°( )

      (3)30° 40° 50°( )

      4、紅領巾是一個等腰三角形,求底角的度數。(多媒體出示)

      對學生進行思品教育。

      5、思考延伸。

      根據三角形內角和是180度,算一算四邊形和八邊形的內角和是多少?

      6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

      五、總結。

    《三角形的內角和》教學設計14

      教學目標:

      1、通過測量,撕拼,折疊等方法。探索和發(fā)現三角形三個內角和的度數等于180°。

      2、引導學生動手實驗,經歷知識的生長過程培養(yǎng)學生的探索意識和動手能力,初步感受數學研究方法。

      3、能運用三角形內角和知識解決一些簡單的問題。

      教學重點:

      探索和發(fā)現“三角形內角和是180°”。

      教學難點:

      驗證“三角形內角和是180°,以及對這一知識的靈活運用。”

      教具準備:

      三角形,多媒體課中。

      教學過程設計:

      一、創(chuàng)設情境:故事引入,森林王國里住著平面圖形和立體圖形兩大家族,一天平面圖形的三角形家庭傳出一片吵鬧聲,大三角形與小三角形在爭論:聽大三角形說:“我的內角和比你大”,小三角形不服氣,可又不知如何反駁,同學們,你們知道到底誰的內角和大嗎?

      二、探究新知:

      (一)、量一量:四人一小組,分別測量本組準備的三角形的內角,并求出和。

      你們發(fā)現三角形的內角和是多少?匯報,提出疑問,三角形的內角和是不是剛好等于180°

      (二)、拼一拼

      引導學生獨立完成,撕下二個角與第三個角拼在在一起,發(fā)現了什么?

      引導學生得出:三角形內角和等于180°

      (三)折一折

      引導學生同桌互相幫助完成,發(fā)現三個角形的三個內角折在一起是平角。

      回答大小三角形的爭論:大三角形與小三角形的.內角形誰大?并說出理由。

      三、鞏固拓展

      1、填一填

      ①直角形三角形的兩個銳角和是()度。

      ②直角三角形的一個銳角是45°,另一個銳角是()度。

      ③鈍角三角形的兩上內角分別是20°,60°;則第三個角是()

      2、火眼金晴

      ①鈍角三角形的兩個鈍角和大于90°()。

      ②直角三角形的兩個銳角之和正好等于90°()。

      ③淘氣畫了一個三個角分別是50°,70°,50°的三角形()

      ④兩個銳角是60°的三角形是等邊三角形()

      ⑤長方形的內角和等于360°()。

      3、猜一猜:四邊形的內角和是多少度?

      五邊形的內角和是多少度?

      四、小結,今天學習了什么?你有什么收獲?

    《三角形的內角和》教學設計15

      【教材分析】

      《三角形內角和》是北師大版《數學》四年級下冊的內容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握“三角形的內角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個內角的度數,求出第三個角的度數。

      【學生分析】

      經過近四年的課改實驗,孩子們已經有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數學產生了濃厚的興趣。1.知識方面:學生已經掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。

      【學習目標】

      知識目標:掌握三角形內角和是180度這一規(guī)律,并能實際應用。

      能力目標: 培養(yǎng)學生主動探索、動手操作的能力。培養(yǎng)學生收集、整理、歸納信息的能力。使學生養(yǎng)成良好的合作習慣。

      情感目標: 讓學生體會幾何圖形內在的結構美。

      【教學過程】

      一、 情景激趣,質疑猜想。

      播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發(fā)了一場激烈的爭吵。

      鈍角三角形大聲叫著:“我的鈍角大,我的內角和一定比你們的內角和大。”銳角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小。”直角三角形說:“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的。”

      師:想一想,什么是三角形的三個內角的和。

      生:三角形的三個內角的度數和。

      師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的.對?

      學生進行猜想,自由發(fā)言。

      (設計意圖:教師借助多媒體技術創(chuàng)設問題情境,架起數學學習與現實生活,抽象數學與具體問題之間的橋梁,激發(fā)了學生的學習興趣。鼓勵學生主動質疑猜想是培養(yǎng)學生學會學習的重要途徑。)

      二、自主探究,驗證猜想

      師:剛才大部分同學都猜直角三角形說的對。三角形的三個內角的和都是 180°,你能設法驗證這個猜想嗎?

      生1:能。我量出三角形的三個內角和度數,加起來是否接近180°(量的時候可能會有些誤差)。

      生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。

      生3:我把三角形的三個角撕下來,拼一拼是否180°。

      生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。

      ……

      師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧!(學生把三角形的三個內角分別標上∠1、∠2、∠3,以免在剪拼時把內角搞混了。)

      學生邊實驗邊整理信息,完成實驗報告單后,學習小組內進行交流討論。

      (設計意圖:驗證猜想為學生提供了“做數學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數學知識的產生發(fā)展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創(chuàng)新能力的發(fā)展。)

      三、交流評價,歸納結論。

      學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。

      實驗報告單

      實驗名稱

      三角形內角和

      實驗目的

      探究三角形內角和是多少度。

      實驗材料

      尺子

      剪刀

      量角器

      銳角三角形紙片

      直角三角形紙片

      鈍角三角形紙片

      我的方法

      我的發(fā)現

      我的表現

      自評

      互評

      學生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現,教師要對學生的閃光點及時進行表揚和鼓勵。

      師生共同歸納,得出結論:

      三角形內角和等于180°

      (設計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發(fā)現的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

      四、分層練習,鞏固創(chuàng)新。

      ①課件出示:

      師:這個三角形是什么三角形?知道幾個內角的度數?

      生:直角三角形,知道一個角是30°,還有一個角是90°。∠A=90°-30°=60°。

      師:根據今天所學的知識,誰能求出A的度數?大家自己試一試。

      學生做完后反饋講評時讓學生說說自己的方法。

      生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。

      ∠A=180°-30°-90°=60°。

      生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

      ②學生完成完成P29的第一題。

      引導學生按照前面的方法獨立完成,教師巡視,集體訂正。

      ③猜一猜三角形的另外兩個角可能各是多少度。

      同桌同學互相說一說。(答案不唯一)

      ④小組操作探究活動。

      讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

      方 法

      四邊形內角和

      用量角器量出每個內角的度數,并相加。

      把四邊形四個角剪下來,拼在一起。

      把四邊形分為兩個三角形。

      填表后讓學生想一想、互相說一說,四邊形內角和是多少度?

      (設計意圖:引導學生將探究學習活動中所獲得的結論經驗和方法運用于探索解決簡單的實際問題。組織學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)

    【《三角形的內角和》教學設計】相關文章:

    《三角形內角和》教學設計03-08

    三角形內角和教學設計02-13

    《三角形的內角和》教學設計07-29

    《三角形內角和》的教學設計05-11

    三角形內角和教學設計03-09

    《三角形內角和》教學設計07-08

    三角形的內角和的教學設計01-22

    《三角形的內角和》教學設計08-19

    《三角形內角和》的教學設計05-10

    三角形的內角和教學設計09-11

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      亚洲日韩国内欧洲在线观看 | 亚洲日韩欧美另类 | 日韩亚洲欧美另类在线 | 色亚洲激情蜜芽一区 | 中文婷婷偷拍免费视频 | 婷婷丁香五月中文字幕 |