相反數教案
相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。相反數的性質是他們的絕對值相同。下面是小編為大家收集的相反數教案,歡迎閱讀與收藏。
相反數人教版數學七年級上冊教案
在教學工作者開展教學活動前,總歸要編寫教案,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。快來參考教案是怎么寫的吧!以下是小編為大家整理的相反數人教版數學七年級上冊教案,歡迎閱讀,希望大家能夠喜歡。
一、學習目標
1.掌握相反數的概念;
2.會求一個已知數的相反數;
3.體驗數形結合思想;
4.根據相反數的意義化簡符號.
二、知識回顧
1.數軸的三要素是什么?在下面畫出一條數軸:
原點、正方向和單位長度.
2.在上面的數軸上描出表示5、—2、—5、+2這四個數的點.
3.觀察上圖并填空:數軸上與原點的距離是2的點有2個,這些點表示的數是2、-2;與原點的距離是5的點有2個,這些點表示的數是5、-5.
三、新知講解
1.相反數的幾何意義
數軸上表示互為相反數的.兩個數的點關于原點對稱.
2.相反數的概念
像2和—2、5和—5、3和—3這樣,只有符號不同的兩個數叫做互為相反數.把其中一個數叫做另一個數的相反數.特別地,0的相反數是0.
四、典例探究
1.相反數的幾何意義(相反數的引入)
【例1】如果a是一個正數,那么數軸上與原點的距離是a的點有兩個,即一個表示a,另一個是,它們分別在原點的左邊和右邊,我們說,這兩點關于.
a和互為相反數,也就是說,-a是的相反數.
總結:互為相反數的兩個數分別位于原點的兩側,且到原點的距離相等,我們也說數軸上表示互為相反數的兩個數的點關于原點對稱.
《絕對值與相反數》教案設計
教學目標:
1.知道一個數的絕對值與這個數本身或它的相反數有什么關系;
2.會利用絕對值比較兩個有理數大小;
3.在具體進行兩個負數的大小比較中,培養推理論證能力,體會數形結合與轉化的思想方法.
教學重點:
知道一個數的絕對值與這個數本身或它的相反數有什么關系;會利用絕對值比較兩個有理數大小.
教學難點:
會利用絕對值比較兩個有理數大小.
教學過程:
一、議一議:
1.根據絕對值與相反數的意義填空:
(1)|2.3|= , = ,|6|= ;
(2)|-5|= , |-10.5|= ,|- |= ;-5的相反數是______,-10.5的相反數是______,- 的相反數是______;
(3)|0|=______,0的相反數是______.
2.(1)任意說出一個負數,并說出它的絕對值、它的相反數.
(2)一個數的絕對值與這個數本身或它的相反數有什么關系?
3.(1)2與3哪個大?這兩個數的絕對值哪個大?
(2)-1與-4哪個大?這兩個數的絕對值哪個大?
(3)任意寫出兩個負數,并說出這兩個負數哪個大?他們的絕對值哪個大?
(4)兩個有理數的大小與這兩個數的絕對值的.大小有什么關系?
二、展示交流
活動一、探究一個數的絕對值與這個數本身或它的相反數之間的關系
小組討論:
1.一個數的絕對值一定與這個數本身相等嗎?
2.一個數的絕對值一定與它的相反數相等嗎?
絕對值與相反數教案
學習目標:
1、知道一個數的絕對值與這個數的本身或它的相反數的關系,并會根據這種關系求一個數的絕對值.
2、會運用絕對值比較兩個有理數的大小.
3、會綜合應用絕對值、相反數、數軸的知識解題
學習重點:
1、求一個數的絕對值與它本身或它的相反數的關系.
2、比較兩個數的大小.
學習難點:
絕對值的綜合運用
學習過程:
一、情景導入
1.根據絕對值與相反數的意義填空:
(1) ∣2.3∣= , ∣ ∣= , ∣6∣= ;
(2) ∣-5∣= , ∣-10.5∣= , ∣- ∣= ,
(3)-5的相反數是 .-10.5的相反數是 (- )的相反數 .
(4) ∣0∣= .0的相反數是 .
二、自主探索
1、討論:
一個數的絕對值與它的本身和它的相反數有什么關系?
你得到的結論是:
(1)
(2)
(3)
例1、求下列各數的絕對值:
+6, -3, -2.7, 0, - (-3.2).
2、比較兩數的大小
提問:
用或填空:
(1) +3 0 , -2 0 ,
+1.02 -3.2
(2) 2 +3 , ∣2∣ ∣+3∣
-2 -5 , ∣-2∣ ∣-5∣
-1.5 -4 ∣-1.5∣ ∣-4∣
討論:
兩個正數,絕對值大的正數 ,
兩個負數,絕對值大的負數 .
例2: 比較-9.5與-1.75的`大小
練習:比較-2.8與-4.1的大小
七年級數學教案:相反數
一、學習目標
1了解相反數的概念。
2給一個數,能求出它的相反數。
3根據a的相反數是-a,能把多重符號化成單一符號。
二、教學過程
師:請同學們畫一條數軸,在數軸上找出表示+6和-6的點,看一看表示這兩個數的點有什么特點,這兩個數本身有什么特點。先獨立思考,然后在小組里交流。
生:人人動用手畫數軸,獨立思考后,在小組內進行交流。
師:深入了解各小組的交流情況,討論結束后,提問1、2人,幫助全班同學理清思考問題的思路。
師:請同學們閱讀課本,知道什么叫相反數,給出一個數能求出它的'相反數。
生:閱讀課本第59頁,并完成練習一第(1)~(4)題。
師:提問檢查學生的學習情況,強調“0的相反數是0”也是相反數定義的一部分。
師:請同學們先想一想,a可以表示一個什么數,a與-a有什么關系。然后閱讀課本第60頁,并完成剩余的練習題,由小組長負責檢查練習情況。
師:認真了解各小組的學習情況,特別是對簡化符號的題和學習困難的學生,要重點對待。
生:認真思考,閱讀課本,完成練習。小組長、教師對學習困難生及時進行輔導。
師:請同學們先小結一下本節課的學習內容。然后,看一看習題2.3中,哪些題你能不動筆說出結果,請在四人小組里互相說一說。(除A組第2題外都可以直接說出結果)
生:小結。完成習題1.3 中的有關練習。
練習
1在下列各式中分別填上適當的符號,使等號左右兩端的數相等;
數學教案:相反數
教學目標
1借助數軸理解相反數的概念,會求一個數的相反數;
2培養學生觀察、猜想、歸納的能力,初步形成數形結合的思想。
重點難點
重點:理解相反數的概念和求一個數的相反數
難點:相反數概念的理解
教學過程
一激情引趣,導入新課
思考:
⑴數軸上與原點距離是2的點有______個,這些點表示的數是_____;與原點的距離是5的點有______個,這些點表示的數是_______
(2)數軸上與原點的距離是0.5的點有_____個,這些點表示的數是______,數軸上與原點的距離是的點有____個,這些點表示的數是_______
一般地,設a是一個正數,數軸上與原點的距離是a的點有___個,它們分別在原點的____,表示____和____,我們說這兩點關于原點對稱。
二合作交流,探究新知。
相反數的概念
觀察:+3.6和-3.6,6和-6,,和-每對數,有什么相同和不同?
歸納:像+3.6和-3.6、6和-6、,和-只有符號不同的兩個數,叫互為相反數。其中一個叫另一個的相反數.
考考你:
(1)-8的相反數是___,7是____的`相反數。
(2)a的相反數是_____.-a的相反數是____
(3)怎樣表示一個數的相反數?
在這個數的前面添上“-”,就可表示這個數的相反數。如12的相反數是____,-9的相反數是_____,如果在這個數的前面添上“+”表示____.
相反數與絕對值數學課堂教案
學習目的
1.使學生理解相反數的意義;
2.給出一個數,能求出它的相反數;
3.理解絕對值的意義,熟悉絕對值符號;
4.給一個數,能求它的絕對值。
教學重點、難點:
1.理解掌握雙重符號的化簡法則。
2.能正確理解絕對值在數軸上表示的意義。
教學過程
一、交流與發現:
1.相反數的概念:
首先,咱們來畫一條數軸,然后在數軸上標出下列各點:3和-3,1.6和-1.6,請同學們觀察:(1)上述這兩對數有什么特點?(2)表示這兩對數的數軸上的點有什么特點?(3)請你再寫出同樣的幾對點來?
同學們通過觀察思考可以總結出以下幾點:
(1)上面的這兩對數中,每一對數,只有符號不同。
(2)這兩對數所對應的點中每一組中的兩個點,一個在原點的左邊,一個在原點的右邊,而且離開原點的距離相同。
練一練:請同學們舉出幾個相反數的例子
(強調)我們還規定:0的相反數是0
說明:
(1)注意理解相反數定義中“只有”的含義。
(2)相反數是相對而言的,即如果6是-6的相反數,則-6也是6的相反數,因而相反數全是成對出現的。
(3)兩個互為相反數的數在數軸上的對應點(除0外),在原點的兩旁,并且距離原點距離相等的兩個點,至于0的相反數是0的幾何意義,可理解為這兩點距離原點都是零。
二、典型例題
例(1)分別指出9和-7的相反數;
解:由相反數的定義可知:
(1)9的相反數是-9,-7的相反數是7;
數軸相反數與絕對值課堂教案
數軸、相反數與絕對值
教學目標:
1、知識與技能:(1)借助數軸理解相反數的概念,會求一個數的相反數。
(2)培養學生觀察、猜想、驗證等能力,初步形成數形結合的思想。
2、過程與方法:在教師的指導下,讓學生通過觀察、比較,歸納出相反數的概念和性質。
重點、難點
1、重點:理解相反數的意義,會求一個數的相反數。
2、難點:對相反數意義的理解。
教學過程:
一、創設情景,導入新課
1、請兩位同學背靠背,一個向左走5步,另一個向右走5步,如果向右走為正,向左、向右分別記作什么?(生答:+5、-5),+5與-5這樣成對出現的數就是為們今天要學習的相反數。
二、合作交流,解讀探究
1、(出示小黑板)
教師提出問題:上圖中數軸上的點B和點D表示的數各是什么?有什么關系?
學生活動:分小組討論,與同伴交流。
教師活動:請幾位同學說出他們討論的結果,指出點B表示+2.6,點D表示-2.6,它們只有符號不同,到原點的`距離都是2.6。
2、(板書):如果兩個數只有符號不同,那么我們將其中一個數叫做另一個數的相反數,也稱這兩個數互為相反數。
0的相反數是0
3、學生活動:在數軸上,表示互為相反數的兩個點有什么關系?
學生代表回答后,小結:在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點的距離相等。
4、練習填空:
3的相反數是 ; -6的相反數是 ;-(-3)= ;-(-0.8)= ;
相反數教案
相反數教案
一、學習與導學目標:
知識與技能:借助數軸理解相反數的意義,懂得數軸上表示相反數的兩個點關于原點對稱,會求有理數的相反數;
過程與方法:經歷概念的生成、應用,體會相反數的意義,簡化數的符號,學習觀察、歸納、概括的策略與方法;
情感態度:通過師生、生生合作學習,促進交流,激發興趣。
二、學程與導程活動:
A、準備活動:
1、師生游戲唱反調:我們知道在小學學過的0以外的數前面加上負號-的數就是負數。現在我說一個正數,你們給它添上-號說出來,我如果說一個負數,你們反過來說出對應的正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2 、18.4、-0.175。
2、上述唱反調的兩個數3與-3,1與-1,-1/2 與1/2,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的'距離相等,真可謂從原點背道而馳唱反調)。
提問:數軸上與原點距離是4的點有幾個?這些點表示的數是多少?
歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。
B、學習概念:
1、像3和-3,1和-1,-1/2 和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(opposite number)。也就是說3的相反數是-3,-3的相反數是3。可見:相反數是成對出現的,不能單獨存在。
初一數學相反數教案
初一數學相反數教案
一、學習與導學目標:
知識與技能:借助數軸理解相反數的意義,懂得數軸上表示相反數的兩個點關于原點對稱,會求有理數的相反數;
過程與方法:經歷概念的生成、應用,體會相反數的意義,簡化數的符號,學習觀察、歸納、概括的策略與方法;
情感態度:通過師生、生生合作學習,促進交流,激發興趣。
二、學程與導程活動:
A、準備活動:
1、師生游戲“唱反調”:我們知道在小學學過的0以外的數前面加上負號“-”的數就是負數。現在我說一個正數,你們給它添上“-”號說出來,我如果說一個負數,你們反過來說出對應的正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。
2、上述“唱反調”的兩個數3與-3,1與-1,-1/2與1/2……,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的距離相等,真可謂從原點背道而馳“唱反調”)。
提問:數軸上與原點距離是4的點有幾個?這些點表示的數是多少?
歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。
B、學習概念:
1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(oppositenumber)。也就是說3的相反數是-3,-3的相反數是3。可見:相反數是成對出現的,不能單獨存在。
123相反數優秀教案
123相反數優秀教案
教學目標
1,掌握相反數的概念,進一步理解數軸上的點與數的對應關系;
2,通過歸納相反數在數軸上所表示的點的特征,培養歸納能力;
3,體驗數形結合的思想。
教學難點歸納
相反數在數軸上表示的點的特征
知識重點相反數的概念
教學過程(師生活動)設計理念
設置情境
引入課題問題1:請將下列4個數分成兩類,并說出為什么要這樣分類
4,-2,-5,+2
允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當的引導,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導學生觀察與原點的距離)
思考結論:教科書第13頁的思考
再換2個類似的數試一試。
歸納結論:教科書第13頁的歸納。以開放的形式創設情境,以學生進行討論,并培養分類的能力
培養學生的觀察與歸納能力,滲透數形思想
深化主題提煉定義給出相反數的定義
問題2:你怎樣理解相反數定義中的“只有符號不同”和“互為”一詞的含義?零的相反數是什么?為什么?
學生思考討論交流,教師歸納總結。
規律:一般地,數a的相反數可以表示為-a
思考:數軸上表示相反數的兩個點和原點有什么關系?
練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數在數軸上的特征做準備。深化相反數的概念;“零的相反數是零”是相反數定義的一部分。強化互為相反數的數在數軸上表示的點的幾何意義