函數知識點總結

    時間:2024-08-22 16:45:55 知識點總結 我要投稿

    (精品)函數知識點總結

      總結是對某一特定時間段內的學習和工作生活等表現情況加以回顧和分析的一種書面材料,它能夠給人努力工作的動力,讓我們一起來學習寫總結吧。我們該怎么去寫總結呢?以下是小編收集整理的函數知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。

    (精品)函數知識點總結

    函數知識點總結1

      一次函數知識點總結基本概念

      1、變量:在一個變化過程中可以取不同數值的量。常量:在一個變化過程中只能取同一數值的量。

      例題:在勻速運動公式svt中,v表示速度,t表示時間,s表示在時間t內所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.

      2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。

      *判斷Y是否為X的函數,只要看X取值確定的時候,Y是否有唯一確定的值與之對應

      1-12

      例題:下列函數(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函數的有()

      x(A)4個(B)3個(C)2個(D)1個

      3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。(x的取值范圍)一次函數

      1..自變量x和因變量y有如下關系:

      y=kx+b(k為任意不為零實數,b為任意實數)則此時稱y是x的一次函數。特別的,當b=0時,y是x的正比例函數。即:y=kx(k為任意不為零實數)

      定義域:自變量的取值范圍,自變量的取值應使函數有意義;要與實際有意義。

      2.當x=0時,b為函數在y軸上的截距。

      一次函數性質:

      1在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

      2一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。3.函數不是數,它是指某一變量過程中兩個變量之間的關系。

      特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。

      這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關系

      當平面直角坐標系中兩直線平行時,其函數解析式中K值(即一次項系數)相等

      當平面直角坐標系中兩直線垂直時,其函數解析式中K值互為負倒數(即兩個K值的乘積為-1)

      應用

      一次函數y=kx+b的性質是:(1)當k>0時,y隨x的增大而增大;(2)當kx2B.x10,且y1>y2。根據一次函數的性質“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。

      判斷函數圖象的位置

      例3.一次函數y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數的圖象不經過()A.第一象限B.第二象限

      C.第三象限D.第四象限

      解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k

      解析式:y=kx(k是常數,k≠0)必過點:(0,0)、(1,k)

      走向:k>0時,圖像經過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經過第一、三象限;k0,圖象經過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的'圖象向上平移b個單位;當b

      若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.已知函數y=3x+1,當自變量增加m時,相應的函數值增加()A.3m+1B.3mC.mD.3m-1

      11、一次函數y=kx+b的圖象的畫法.

      根據幾何知識:經過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖

      象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),坐標或縱坐標為0的點.

      b>0經過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經過第一、二、四象限經過第二、三、四象限經過第二、四象限k0時,向上平移;當b

      某個一次函數的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.

    函數知識點總結2

      一次函數

      一、定義與定義式:

      自變量x和因變量y有如下關系:

      y=kx+b

      則此時稱y是x的一次函數。

      特別地,當b=0時,y是x的正比例函數。

      即:y=kx (k為常數,k0)

      二、一次函數的性質:

      1、y的變化值與對應的x的變化值成正比例,比值為k

      即:y=kx+b (k為任意不為零的實數b取任何實數)

      2、當x=0時,b為函數在y軸上的截距。

      三、一次函數的圖像及性質:

      1、作法與圖形:通過如下3個步驟

      (1)列表;

      (2)描點;

      (3)連線,可以作出一次函數的圖像一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

      2、性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過原點。

      3、k,b與函數圖像所在象限:

      當k0時,直線必通過一、三象限,y隨x的增大而增大;

      當k0時,直線必通過二、四象限,y隨x的增大而減小。

      當b0時,直線必通過一、二象限;

      當b=0時,直線通過原點

      當b0時,直線必通過三、四象限。

      特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

      這時,當k0時,直線只通過一、三象限;當k0時,直線只通過二、四象限。

      四、確定一次函數的表達式:

      已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

      (1)設一次函數的表達式(也叫解析式)為y=kx+b。

      (2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b ①和y2=kx2+b ②

      (3)解這個二元一次方程,得到k,b的值。

      (4)最后得到一次函數的表達式。

      五、一次函數在生活中的應用:

      1、當時間t一定,距離s是速度v的一次函數。s=vt。

      2、當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S—ft。

      六、常用公式:(不全,希望有人補充)

      1、求函數圖像的k值:(y1—y2)/(x1—x2)

      2、求與x軸平行線段的中點:|x1—x2|/2

      3、求與y軸平行線段的中點:|y1—y2|/2

      4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)

      二次函數

      I、定義與定義表達式

      一般地,自變量x和因變量y之間存在如下關系:

      y=ax^2+bx+c

      (a,b,c為常數,a0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

      則稱y為x的二次函數。

      二次函數表達式的右邊通常為二次三項式。

      II、二次函數的三種表達式

      一般式:y=ax^2+bx+c(a,b,c為常數,a0)

      頂點式:y=a(x—h)^2+k [拋物線的頂點P(h,k)]

      交點式:y=a(x—x)(x—x ) [僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

      注:在3種形式的互相轉化中,有如下關系:

      h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

      III、二次函數的圖像

      在平面直角坐標系中作出二次函數y=x^2的圖像,

      可以看出,二次函數的圖像是一條拋物線。

      IV、拋物線的.性質

      1、拋物線是軸對稱圖形。對稱軸為直線

      x= —b/2a。

      對稱軸與拋物線唯一的交點為拋物線的頂點P。

      特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

      2、拋物線有一個頂點P,坐標為

      P( —b/2a,(4ac—b^2)/4a )

      當—b/2a=0時,P在y軸上;當= b^2—4ac=0時,P在x軸上。

      3、二次項系數a決定拋物線的開口方向和大小。

      當a0時,拋物線向上開口;當a0時,拋物線向下開口。

      |a|越大,則拋物線的開口越小。

      4、一次項系數b和二次項系數a共同決定對稱軸的位置。

      當a與b同號時(即ab0),對稱軸在y軸左;

      當a與b異號時(即ab0),對稱軸在y軸右。

      5、常數項c決定拋物線與y軸交點。

      拋物線與y軸交于(0,c)

      6、拋物線與x軸交點個數

      = b^2—4ac0時,拋物線與x軸有2個交點。

      = b^2—4ac=0時,拋物線與x軸有1個交點。

      = b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個式子除以2a)

      V、二次函數與一元二次方程

      特別地,二次函數(以下稱函數)y=ax^2+bx+c,

      當y=0時,二次函數為關于x的一元二次方程(以下稱方程),

      即ax^2+bx+c=0

      此時,函數圖像與x軸有無交點即方程有無實數根。

      函數與x軸交點的橫坐標即為方程的根。

      1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

      解析式頂點坐標對稱軸

      y=ax^2(0,0) x=0

      y=a(x—h)^2(h,0) x=h

      y=a(x—h)^2+k(h,k) x=h

      y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

      當h0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

      當h0時,則向左平行移動|h|個單位得到、

      當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x—h)^2+k的圖象;

      當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;

      當h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x—h)^2+k的圖象;

      當h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;

      因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、

      2、拋物線y=ax^2+bx+c(a0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=—b/2a,頂點坐標是(—b/2a,[4ac—b^2]/4a)、

      3、拋物線y=ax^2+bx+c(a0),若a0,當x —b/2a時,y隨x的增大而減小;當x —b/2a時,y隨x的增大而增大、若a0,當x —b/2a時,y隨x的增大而增大;當x —b/2a時,y隨x的增大而減小、

      4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

      (1)圖象與y軸一定相交,交點坐標為(0,c);

      (2)當△=b^2—4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

      (a0)的兩根、這兩點間的距離AB=|x—x|

      當△=0、圖象與x軸只有一個交點;

      當△0、圖象與x軸沒有交點、當a0時,圖象落在x軸的上方,x為任何實數時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數時,都有y0、

      5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時,y最小(大)值=(4ac—b^2)/4a、

      頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值、

      6、用待定系數法求二次函數的解析式

      (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

      y=ax^2+bx+c(a0)、

      (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x—h)^2+k(a0)、

      (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x—x)(x—x)(a0)、

      7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現、

      反比例函數

      形如y=k/x(k為常數且k0)的函數,叫做反比例函數。

      自變量x的取值范圍是不等于0的一切實數。

      反比例函數圖像性質:

      反比例函數的圖像為雙曲線。

      由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。

      另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

      如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。

      當K0時,反比例函數圖像經過一,三象限,是減函數

      當K0時,反比例函數圖像經過二,四象限,是增函數

      反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

      知識點:

      1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。

      2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(xm)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

    函數知識點總結3

      1、定義與定義表達式

      一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

      (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a

      二次函數表達式的右邊通常為二次三項式。

      2、二次函數的三種表達式

      一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

      頂點式:y=a(x-h)^2+k [拋物線的頂點p(h,k)]

      交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點a(x,0)和b(x,0)的拋物線]

      注:在3種形式的互相轉化中,有如下關系:

      h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

      3、二次函數的圖像

      在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

      4、拋物線的性質

      1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。

      對稱軸與拋物線唯一的交點為拋物線的頂點p。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

      2.拋物線有一個頂點p,坐標為:p ( -b/2a,(4ac-b^2)/4a )當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。

      3.二次項系數a決定拋物線的開口方向和大小。

      當a>0時,拋物線向上開口;當a

      4.一次項系數b和二次項系數a共同決定對稱軸的`位置。

      當a與b同號時(即ab>0),對稱軸在y軸左;

      當a與b異號時(即ab

      5.常數項c決定拋物線與y軸交點。

      拋物線與y軸交于(0,c)

      6.拋物線與x軸交點個數

      δ= b^2-4ac>0時,拋物線與x軸有2個交點。

      δ= b^2-4ac=0時,拋物線與x軸有1個交點。

      δ= b^2-4ac

      5、二次函數與一元二次方程

      特別地,二次函數(以下稱函數)y=ax^2+bx+c,

      當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

      此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。

      1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸:

      當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

      當h

      當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2 +k的圖象;

      當h>0,k

      當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

      當h

      因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

      2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a

      3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a

      4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

      (1)圖象與y軸一定相交,交點坐標為(0,c);

      (2)當△=b^2-4ac>0,圖象與x軸交于兩點a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

      (a≠0)的兩根.這兩點間的距離ab=|x-x|

      當△=0.圖象與x軸只有一個交點;

      當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a

      5.拋物線y=ax^2+bx+c的最值:如果a>0(a

      頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值

      6.用待定系數法求二次函數的解析式

      (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

      y=ax^2+bx+c(a≠0).

      (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

      (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).

      7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

    函數知識點總結4

      特別地,二次函數(以下稱函數)y=ax+bx+c。

      當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax+bx+c=0。

      此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。

      1.二次函數y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當h>0時,y=a(x-h)的圖象可由拋物線y=ax向右平行移動h個單位得到。

      當h<0時,則向xxx移動|h|個單位得到。

      當h>0,k>0時,將拋物線y=ax向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)+k的圖象。

      當h>0,k<0時,將拋物線y=ax向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)+k的圖象。

      當h<0,k>0時,將拋物線向xxx移動|h|個單位,再向上移動k個單位可得到y=a(x-h)+k的圖象。

      當h<0,k<0時,將拋物線向xxx移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)+k的圖象。

      因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

      2.拋物線y=ax+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b]/4a)。

      3.拋物線y=ax+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小。

      4.拋物線y=ax+bx+c的圖象與坐標軸的交點:

      (1)圖象與y軸一定相交,交點坐標為(0,c)。

      (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點間的距離AB=|x-x|。

      當△=0.圖象與x軸只有一個交點;當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0。

      5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b)/4a。

      頂點的`橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。

      6.用待定系數法求二次函數的解析式

      (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:y=ax+bx+c(a≠0)。

      (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)+k(a≠0)。

      (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

    函數知識點總結5

      一、函數

      (1)定義:設在某變化過程中有兩個變量x、y,對于x的每一個值,y都有唯一的值與之對應,那么就說x是自變量,y是因變量,此時,也稱y是x的函數。

      (2)本質:一一對應關系或多一對應關系。

      有序實數對平面直角坐標系上的點

      (3)表示方法:解析法、列表法、圖象法。

      (4)自變量取值范圍:

      對于實際問題,自變量取值必須使實際問題有意義;

      對于純數學問題,自變量取值必須保證函數關系式有意義:

      ①分式中,分母≠0;

      ②二次根式中,被開方數≥0;

      ③整式中,自變量取全體實數;

      ④混合運算式中,自變量取各解集的公共部份。

      二、正比例函數與反比例函數

      兩函數的異同點

      三、一次函數(圖象為直線)

      (1)定義式:y=kx+b(k、b為常數,k≠0);自變量取全體實數。

      (2)性質:

      ①k>0,過第一、三象限,y隨x的增大而增大;

      k<0,過第二、四象限,y隨x的`增大而減小。

      ②b=0,圖象過(0,0);

      b>0,圖象與y軸的交點(0,b)在x軸上方;

      b<0,圖象與y軸的交點(0,b)在x軸下方。

      四、二次函數(圖象為拋物線)

      (1)自變量取全體實數

      一般式:y=ax2+bx+c(a、b、c為常數,a≠0),其中(0,c)為拋物線與y軸的交點;

      頂點式:y=a(x—h)2+k(a、h、k為常數,a≠0),其中(h,k)為拋物線頂點;

      h=—,k=零點式:y=a(x—x1)(x—x2)(a、x1、x2為常數,a≠0)其中(x1,0)、(x2,0)為拋物線與x軸的交點。x1、x2 =(b 2 —4ac ≥0)

      (2)性質:

      ①對稱軸:x=—或x=h;

      ②頂點:(—,)或(h,k);

      ③最值:當x=—時,y有最大(小)值,為或當x=h時,y有最大(小)值,為k;

    函數知識點總結6

      1、變量與常量

      在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。

      一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。

      2、函數解析式

      用來表示函數關系的數學式子叫做函數解析式或函數關系式。

      使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

      3、函數的三種表示法及其優缺點

      (1)解析法

      兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。

      (2)列表法

      把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

      (3)圖像法

      用圖像表示函數關系的方法叫做圖像法。

      4、由函數解析式畫其圖像的一般步驟

      (1)列表:列表給出自變量與函數的一些對應值

      (2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

      (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

      初中怎樣學好數學

      學好初中數學培養運算能力

      初中數學涉及到大量的運算內容,比如有理數的運算、因式分解、根式的運算和解方程,這些都是初中數學涉及到的知識內容,如果初中生數學運算能力不過關,那么成績怎么能提高呢?所以運算是學好初中數學的基本功,這個基本功一定要扎實,不然以后的初中數學就可以不用學習了。

      初中生在解答運算題的時候,不要急躁,靜下心來。初中數學運算的過程是很重要的,這也是初中生對于數學邏輯和思維的培養過程,結果要準確;同時初中生還有要絕對的自信,不要求速度可以慢一點的,盡量一次做對。

      學好初中數學做題的數量不能少

      不可否認,想要學好初中數學,就要做一定量的數學題。不贊同大量的刷題,那樣沒有什么意義。初中生做數學題主要是以基礎題的練習為主,將初中數學的基礎題弄懂的同時,反復的做一些比較典型的題,這樣才是初中生正確的學習數學方式。

      在初中階段,學生要鍛煉自己數學的抽象思維能力,最好的結果是在不用書寫的情況下,就能夠得到正確的答案,這也就是我們常說的熟能生巧。同時也是初中生數學基礎知識牢固的體現。相反的,有的初中生在做練習題的時候,比較盲目和急躁,這樣的結果就是粗心大意,馬虎出錯。

      課上重視聽講課下及時復習

      初中生數學能力的培養一部分在于平時做題的過程中,另一部分就在課堂上。所以初中生想要學好數學,就要重視課內的學習效率,在課上的'時候要跟緊老師的思路,大膽的推測老師下一步講課的知識,尤其是基礎知識的學習。在課后初中生還要對學習的數學知識點及時復習。對于每個階段初中數學的學習要進行知識點歸納和整理。

      初中數學多項式知識點

      1、幾個單項式的和叫做多項式。

      2、多項式中的每一個單項式叫做多項式的項。

      3、多項式中不含字母的項叫做常數項。

      4、一個多項式有幾項,就叫做幾項式。

      5、多項式的每一項都包括項前面的符號。

      6、多項式沒有系數的概念,但有次數的概念。

      7、多項式中次數的項的次數,叫做這個多項式的次數。

    函數知識點總結7

      倍角公式

      二倍角公式

      正弦形式:sin2α=2sinαcosα

      正切形式:tan2α=2tanα/(1-tan^2(α))

      余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

      三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α)

      cos3α=4cosα·cos(π/3+α)cos(π/3-α)

      tan3a=tana·tan(π/3+a)·tan(π/3-a)

      四倍角公式

      sin4A=-4*(cosA*sinA*(2*sinA^2-1))

      cos4A=1+(-8*cosA^2+8*cosA^4)

      tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

      半角公式

      正弦

      sin(A/2)=√((1-cosA)/2)

      sin(A/2)=-√((1-cosA)/2)

      余弦

      cos(A/2)=√((1+cosA)/2)

      cos(A/2)=-√((1+cosA)/2)

      正切

      tan(A/2)=√((1-cosA)/((1+cosA))

      tan(A/2)=-√((1-cosA)/((1+cosA))

      積化和差

      sina*cosb=[sin(a+b)+sin(a-b)]/2

      cosa*sinb=[sin(a+b)-sin(a-b)]/2

      cosa*cosb=[cos(a+b)+cos(a-b)]/2

      sina*sinb=[cos(a-b)-cos(a+b)]/2

      和差化積

      sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

      sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

      cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

      cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

      誘導公式

      任意角α與-α的三角函數值之間的關系:

      sin(-α)=-sinα

      cos(-α)=cosα

      tan(-α)=-tanα

      cot(-α)=-cotα

      設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

      sin(π+α)=-sinα

      cos(π+α)=-cosα

      tan(π+α)=tanα

      cot(π+α)=cotα

      利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

      sin(π-α)=sinα

      cos(π-α)=-cosα

      tan(π-α)=-tanα

      cot(π-α)=-cotα

      設α為任意角,終邊相同的角的同一三角函數的值相等:

      sin(2kπ+α)=sinα(k∈Z)

      cos(2kπ+α)=cosα(k∈Z)

      tan(2kπ+α)=tanα(k∈Z)

      cot(2kπ+α)=cotα(k∈Z)

      利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

      sin(2π-α)=-sinα

      cos(2π-α)=cosα

      tan(2π-α)=-tanα

      cot(2π-α)=-cotα

      π/2±α及3π/2±α與α的.三角函數值之間的關系:

      sin(π/2+α)=cosα

      cos(π/2+α)=-sinα

      tan(π/2+α)=-cotα

      cot(π/2+α)=-tanα

      sin(π/2-α)=cosα

      cos(π/2-α)=sinα

      tan(π/2-α)=cotα

      cot(π/2-α)=tanα

      sin(3π/2+α)=-cosα

      cos(3π/2+α)=sinα

      tan(3π/2+α)=-cotα

      cot(3π/2+α)=-tanα

      sin(3π/2-α)=-cosα

      cos(3π/2-α)=-sinα

      tan(3π/2-α)=cotα

      cot(3π/2-α)=tanα

      (以上k∈Z)

      拓展閱讀:三角函數常用知識點

      1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。

      2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數為(∠A可換成∠B)

      3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

      4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。

      5、正弦、余弦的增減性:當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。

      6、正切、余切的增減性:當0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。

    函數知識點總結8

      一、知識導學

      1.二次函數的概念、圖像和性質.(1)注意解題中靈活運用二次函數的一般式二次函數的頂點式二次函數的坐標式

      f(x)ax2bxcf(x)a(xm)2n(a0)和f(x)a(xx1)(xx2)(a0)

      (a0)

      (2)解二次函數的問題(如單調性、最值、值域、二次三項式的恒正恒負、二次方程根的范圍等)要充分利用好兩種方法:配方、圖像,很多二次函數都用數形結合的思想去解.

      ①

      f(x)ax2bxc(a0),當b24ac0時圖像與x軸有兩個交點.

      M(x1,0)N(x2,0),|MN|=|x1-x2|=

      .|a|②二次函數在閉區間上必有最大值和最小值,它只能在區間的端點或二次函數的頂點處取得.2.指數函數

      ①amyax(a0,a1)和對數函數ylogax(a0,a1)的概念和性質.

      (1)有理指數冪的意義、冪的運算法則:

      anamn;②(am)namn;③(ab)nanbn(這時m,n是有理數)

      MlogaMlogaNNlogcb1MlogaM;logab

      nlogcaloga對數的概念及其運算性質、換底公式.

      loga(MN)logaMlogaN;logaMnnlogaM;logan(2)指數函數的圖像、單調性與特殊點.對數函數的圖像、單調性與特殊點.

      ①指數函數圖像永遠在x軸上方,當a>1時,圖像越接近y軸,底數a越大;當0錯解:∵18

      5,∴log185b

      log1845log185log189ba∴log3645log1836log184log189log184a5,∴log185b

      log1845log185log189∴log3645log1836log184log189bb錯因:因對性質不熟而導致題目沒解完.正解:∵18

      bababa

      182182alog18()a2log18()a992[例2]分析方程f(x)axbxc0(a0)的兩個根都大于1的充要條件.

      2錯解:由于方程f(x)axbxc0(a0)對應的二次函數為

      f(x)ax2bxc的圖像與x軸交點的橫坐標都大于1即可.

      f(1)0f(1)0故需滿足b,所以充要條件是b

      112a2a錯因:上述解法中,只考慮到二次函數與x軸交點坐標要大于1,卻忽視了最基本的的前題條件,應讓二次函數圖像與x軸有

      交點才行,即滿足△≥0,故上述解法得到的不是充要條件,而是必要不充分條件.

      f(1)0b正解:充要條件是12a2b4ac0y36x126x5的單調區間.

      x2xx錯解:令6t,則y361265=t12t5

      [例3]求函數

      ∴當t≥6,即x≥1時,y為關于t的增函數,當t≤6,即x≤1時,y為關于t的減函數∴函數

      y36x126x5的單調遞減區間是(,6],單調遞增區間為[6,)

      x錯因:本題為復合函數,該解法未考慮中間變量的取值范圍.正解:令6∴函數

      t,則t6x為增函數,y36x126x5=t212t5=(t6)241

      ∴當t≥6,即x≥1時,y為關于t的增函數,當t≤6,即x≤1時,y為關于t的減函數

      y36x126x5的單調遞減區間是(,1],單調遞增區間為[1,)

      [例4]已知yloga(2ax)在[0,1]上是x的減函數,則a的取值范圍是錯解:∵yloga(2ax)是由ylogau,u2ax復合而成,又a>0∴u2ax在[0,1]上是x的減函數,由復合函數關系知,ylogau應為增函數,∴a>1

      錯因:錯因:解題中雖然考慮了對數函數與一次函數復合關系,卻忽視了數定義域的限制,單調區間應是定義域的某個子區間,即函數應在[0,1]上有意義.

      yloga(2ax)是由ylogau,u2ax復合而成,又a>0∴u2ax在[0,1]上是x的減函數,

      由復合函數關系知,ylogau應為增函數,∴a>1

      又由于x在[0,1]上時yloga(2ax)有意義,u2ax又是減函數,∴x=1時,u2ax取最小值是

      正解:∵

      umin2a>0即可,∴a<2,綜上可知所求的取值范圍是1<a<2[例5]已知函數f(x)loga(3ax).

      (1)當x[0,2]時f(x)恒有意義,求實數a的取值范圍.

      (2)是否存在這樣的實數a使得函數f(x)在區間[1,2]上為減函數,并且最大值為

      存在,請說明理由.分析:函數

      1,如果存在,試求出a的值;如果不

      f(x)為復合函數,且含參數,要結合對數函數的性質具體分析找到正確的解題思路,是否存在性問題,分析時一

      0,a1

      般先假設存在后再證明.

      解:(1)由假設,3ax>0,對一切x[0,2]恒成立,a顯然,函數g(x)=3ax在[0,2]上為減函數,從而g(2)=32a>0得到a<(2)假設存在這樣的'實數a,由題設知∴a=

      32∴a的取值范圍是(0,1)∪(1,

      32)

      f(1)1,即f(1)loga(3a)=1

      32此時

      f(x)loga(33x)當x2時,f(x)沒有意義,故這樣的實數不存在.2,

      12x4xa[例6]已知函數f(x)=lg,其中a為常數,若當x∈(-∞,1]時,f(x)有意義,求實數a的取值范圍.

      a2a1xx3111xx解:124a>0,且a-a+1=(a-)+>0,∴1+2+4a>0,a>(11),當x∈(-∞,1]時,y=x與y=x都

      24424x2xa2a1333是減函數,∴y=(11)在(-∞,1]上是增函數,(11)max=-,∴a>-,故a的取值范圍是(-,+∞).

      4444x2x422

      2

      xx[例7]若(a1)解:∵冪函數

      13(32a)1313,試求a的取值范圍.

      yx有兩個單調區間,

      ∴根據a1和32a的正、負情況,有以下關系a10a1032a0.①32a0.②a132aa132a解三個不等式組:①得

      a10.③32a023,

      23<a<

      32,②無解,③a<-1,∴a的取值范圍是(-∞,-1)∪(

      32)

      [例8]已知a>0且a≠1,f(logax)=

      a1(x-

      xa21)

      (1)求f(x);(2)判斷f(x)的奇偶性與單調性;

      2

      (3)對于f(x),當x∈(-1,1)時,有f(1-m)+f(1-m)<0,求m的集合M.

      分析:先用換元法求出f(x)的表達式;再利用有關函數的性質判斷其奇偶性和單調性;然后利用以上結論解第三問.解:(1)令t=logax(t∈R),則xat,f(t)aatt(aa),f(x)(axax),(xR).22a1a1aa(axax)f(x),且xR,f(x)為奇函數.當a1時,20,a1a1u(x)axax為增函數,當0a1時,類似可判斷f(x)為增函數.綜上,無論a1或0a1,f(x)在R上都是增函數.

      (3)f(1m)f(1m2)0,f(x)是奇函數且在R上是增函數,f(1m)f(m21).又x(1,1)(2)f(x)211m11m2111m2.1mm21四、典型習題導練1.函數

      f(x)axb的圖像如圖,其中a、b為常數,則下列結論正確的是()A.a1,b0B.a1,b0C.0a1,b0D.0a1,b0

      x的值為()

      yC.1或4C.2

      2

      2、已知2lg(x-2y)=lgx+lgy,則A.13、方程loga(x1)xA.04、函數f(x)與g(x)=(

      2B.4B.1

      x

      D.4或8D.3

      ()

      2(0A.

      0,nB.,0C.

      0,2

      D.

      2,0

      5、圖中曲線是冪函數y=x在第一象限的圖像,已知n可取±2,±

      1四個值,則相應于曲線c1、c2、c3、c4的n依次為()211111111A.-2,-,,2B.2,,-,-2C.-,-2,2,D.2,,-2,-

      2222226.求函數y=log2

      2(x-5x+6)的定義域、值域、單調區間.7.若x滿足2(log21x)14log4x30,求f(x)=logxx222log22最大值和最小值.

      8.已知定義在R上的函數f(x)2xa2x,a為常數(1)如果f(x)=f(x),求a的值;

      (2)當

      f(x)滿足(1)時,用單調性定義討論f(x)的單調性.

      基本初等函數綜合訓練B組

      一、選擇題

      1.若函數

      f(x)logax(0a1)在區間[a,2a]上的最大值是最小值的3倍,則a的值為()

      A.214B.22C.4D.12

      2.若函數yloga(xb)(a0,a1)的圖象過兩點(1,0)

      和(0,1),則()

      A.a2,b2B.a2,b2

      C.a2,b1D.a2,b23.已知f(x6)log2x,那么f(8)等于()

      A.43B.8C.18D.12

      4.函數ylgx()

      A.是偶函數,在區間(,0)上單調遞增B.是偶函數,在區間(,0)上單調遞減C.是奇函數,在區間(0,)上單調遞增D.是奇函數,在區間(0,)上單調遞減

      5.已知函數f(x)lg1x1x.若f(a)b.則f(a)()A.bB.bC.11bD.b

      6.函數f(x)logax1在(0,1)上遞減,那么f(x)在(1,)上()

      A.遞增且無最大值B.遞減且無最小值C.遞增且有最大值D.遞減且有最小值

      二、填空題1.若

      f(x)2x2xlga是奇函數,則實數a=_________。

      2.函數

      f(x)log1x22x5的值域是__________.

      23.已知log147a,log145b,則用a,b表示log3528。4.設

      A1,y,lgxy,B0,x,y,且AB,則x;y。5.計算:

      322log325。

      ex16.函數y的值域是__________.

      xe1三、解答題

      1.比較下列各組數值的大小:(1)1.7

      2.解方程:(1)9

      3.已知

      4.已知函數

      參考答案

      一、選擇題

      x3.3和0.82.1;(2)3.30.7和3.40.8;(3)

      3,log827,log9252231x27(2)6x4x9x

      y4x32x3,當其值域為[1,7]時,求x的取值范圍。

      f(x)loga(aax)(a1),求f(x)的定義域和值域;

      1112321.Alogaa3loga(2a),loga(2a),a32a,a8a,a,a3842.Aloga(b1)0,且logab1,ab2

      3.D令x4.B令令u68(x0),x82,f(8)f(x6)log2xlog2216f(x)lgx,f(x)lgxlgxf(x),即為偶函數

      x,x0時,u是x的減函數,即ylgx在區間(,0)上單調遞減

      1x1xlgf(x).則f(a)f(a)b.5.Bf(x)lg1x1x6.A令ux1,(0,1)是u的遞減區間,即a1,(1,)是u的遞增區間,即f(x)遞增且無最大值。

      二、填空題1.

      1xxxxf(x)f(x)22lga22lga10x(lga1)(2(另法):xR,由2.

      2x)0,lga10,a110110f(x)f(x)得f(0)0,即lga10,a,2x22x5(x1)244,

      而011,log1x22x5log1422222alog14283.log147log145log1435ab,log3528

      ablog1435141log14log14(214)1log14271(1log147)2a

      log1435log1435log1435log1435ab4.1,1∵0A,y又∵1B,y0,∴lg(xy)0,xy1

      51,∴x1,而x1,∴x1,且y1

      3215.

      5322log32log32532log321515ex11y6.(1,1)y,ex0,1y1ex11y三、解答題1.解:(1)∵1.71.701,0.82.10.801,∴1.73.30.82.1

      0.70.80.70.80.80.8(2)∵3.33.3,3.33.4,∴3.33.4(3)log827log23,log925log35,

      3.333332log22log222log23,log332log333log35,223∴log925log827.

      2x2xxxx2.解:(1)(3)63270,(33)(39)0,而330

      3x90,3x32,

      x22x4x22x2x(2)()()1,()()10

      39332251()x0,則()x,332

      xlog23512

      3.解:由已知得14x32x37,

      xxxx43237(21)(24)0,得x即

      xxx43231(21)(22)0xx即021,或224∴x0,或1x2。

      xx4.解:aa0,aa,x1,即定義域為(,1);

      ax0,0aaxa,loga(aax)1,即值域為(,1)。

      擴展閱讀:高一數學上冊 第二章基本初等函數之對數函數知識點總結及練習題(含答案)

      〖2.2〗對數函數

      【2.2.1】對數與對數運算

      (1)對數的定義

      ①若axN(a0,且a1),則x叫做以a為底N的對數,記作xlogaN,其中a叫做底數,

      N叫做真數.

      ②負數和零沒有對數.③對數式與指數式的互化:xlogaNaxN(a0,a1,N0).

      (2)幾個重要的對數恒等式:loga10,logaa1,logaabb.

      N;自然對數:lnN,即loge(3)常用對數與自然對數:常用對數:lgN,即log10…).e2.71828(4)對數的運算性質如果a0,a1,M①加法:logaN(其中

      0,N0,那么

      MlogaNloga(MN)

      M②減法:logaMlogaNlogaN③數乘:nlogaMlogaMn(nR)

      ④

      alogaNN

      nlogaM(b0,nR)bn⑤logabM⑥換底公式:logaNlogbN(b0,且b1)

      logba【2.2.2】對數函數及其性質

      (5)對數函數函數名稱定義函數對數函數ylogax(a0且a1)叫做對數函數a1yx10a1yx1ylogaxylogax圖象O(1,0)O(1,0)xx定義域值域過定點奇偶性(0,)R圖象過定點(1,0),即當x1時,y0.非奇非偶單調性在(0,)上是增函數在(0,)上是減函數logax0(x1)函數值的變化情況logax0(x1)logax0(x1)logax0(0x1)logax0(x1)logax0(0x1)a變化對圖象的影響在第一象限內,a越大圖象越靠低,越靠近x軸在第一象限內,a越小圖象越靠低,越靠近x軸在第四象限內,a越大圖象越靠高,越靠近y軸在第四象限內,a越小圖象越靠高,越靠近y軸(6)反函數的概念

      設函數果對于

      yf(x)的定義域為A,值域為C,從式子yf(x)中解出x,得式子x(y).如

      y在C中的任何一個值,通過式子x(y),x在A中都有唯一確定的值和它對應,那么式子

      x(y)表示x是y的函數,函數x(y)叫做函數yf(x)的反函數,記作xf1(y),習慣

      上改寫成

      yf1(x).

      (7)反函數的求法

      ①確定反函數的定義域,即原函數的值域;②從原函數式③將xyf(x)中反解出xf1(y);

      f1(y)改寫成yf1(x),并注明反函數的定義域.

      (8)反函數的性質

      ①原函數②函數

      yf(x)與反函數yf1(x)的圖象關于直線yx對稱.

      yf(x)的定義域、值域分別是其反函數yf1(x)的值域、定義域.

      yf(x)的圖象上,則P"(b,a)在反函數yf1(x)的圖象上.

      ③若P(a,b)在原函數④一般地,函數

      yf(x)要有反函數則它必須為單調函數.

      一、選擇題:1.

      log89的值是log23A.

      ()

      23B.1C.

      32D.2

      2.已知x=2+1,則log4(x3-x-6)等于

      A.

      ()C.0

      D.

      32B.

      54123.已知lg2=a,lg3=b,則

      lg12等于lg15()

      A.

      2ab

      1abB.

      a2b

      1abC.

      2ab

      1abD.

      a2b

      1ab4.已知2lg(x-2y)=lgx+lgy,則x的值為

      yA.1

      B.4

      ()C.1或4C.(C.ln5

      D.4或-1()

      5.函數y=log1(2x1)的定義域為

      2A.(

      1,+∞)B.[1,+∞)2B.5e

      1,1]2D.(-∞,1)()D.log5e()

      y6.已知f(ex)=x,則f(5)等于

      A.e5

      7.若f(x)logax(a0且a1),且f1(2)1,則f(x)的圖像是

      yyyABCD

      8.設集合A{x|x10},B{x|log2x0|},則AB等于

      A.{x|x1}C.{x|x1}

      B.{x|x0}D.{x|x1或x1}

      2OxOxOxOx()

      9.函數ylnx1,x(1,)的反函數為()x1ex1,x(0,)B.yxe1ex1,x(,0)D.yxe1ex1,x(0,)A.yxe1ex1,x(,0)C.yxe1二、填空題

    函數知識點總結9

      首先,把主要精力放在基礎知識、基本技能、基本方法這三個方面上、因為每次考試占絕大部分的是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納,調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁情緒、特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能把我打垮的自豪感、

      在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前在保證正確率的前提下提高解題速度、對于一些容易的基礎題,要有十二分的把握拿滿分;對于一些難題,也要盡量拿分,考試中要嘗試得分,使自己的水平正常甚至超常發揮、

      要想學好初中數學,多做題目是難免的,熟悉掌握各種題型的解題思路、剛開始要以基礎題目入手,以課上的題目為準,提高自己的分析解決能力,掌握一般的解題思路、對于一些易錯題,可備有錯題集,寫出自己的解題思路、正確的.解題過程,兩者一起比較找出自己的錯誤所在,以便及時更正、在平時養成良好的解題習慣、讓自己的精力高度集中,使大腦興奮思維敏捷,能夠進入最佳狀態,在考試中能運用自如、實踐證明:越到關鍵的時候,你所表現的解題習慣與平時解題無異、如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的、

      初中數學解題方法

      第一點:卓絕點:熟悉數學習題中常設計的內容,定義、公式、原理等等

      第二點:做題有步驟,先易后難

      初中數學做題技巧有一點,那就是先易后難、正所謂“一屋不掃何以掃天下?”,如果同學們連那些簡單容易的數學題目都解答不出來又怎么能夠解答那些疑難的數學題目呢?先易后難的做數學題目不僅能夠增加同學們做數學題的信心,還能夠讓同學享受解答數學題的那個過程、

      第三點:認真做好歸納總結

    函數知識點總結10

      當h>0時,y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動h個單位得到,

      當h<0時,則向左平行移動|h|個單位得到.

      當h>0,k>0時,將拋物線y=a_^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(_-h)^2+k的圖象;

      當h>0,k<0時,將拋物線y=a_^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(_-h)^2+k的圖象;

      當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(_-h)^2+k的圖象;

      當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(_-h)^2+k的圖象;

      因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

      2.拋物線y=a_^2+b_+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線_=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

      3.拋物線y=a_^2+b_+c(a≠0),若a>0,當_≤-b/2a時,y隨_的增大而減小;當_≥-b/2a時,y隨_的增大而增大.若a<0,當_≤-b/2a時,y隨_的增大而增大;當_≥-b/2a時,y隨_的增大而減小.

      4.拋物線y=a_^2+b_+c的圖象與坐標軸的交點:

      (1)圖象與y軸一定相交,交點坐標為(0,c);

      (2)當△=b^2-4ac>0,圖象與_軸交于兩點A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

      (a≠0)的兩根.這兩點間的距離AB=|_?-_?|

      當△=0.圖象與_軸只有一個交點;

      當△<0.圖象與_軸沒有交點.當a>0時,圖象落在_軸的'上方,_為任何實數時,都有y>0;當a<0時,圖象落在_軸的下方,_為任何實數時,都有y<0.

      5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當_=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

      頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

      6.用待定系數法求二次函數的解析式

      (1)當題給條件為已知圖象經過三個已知點或已知_、y的三對對應值時,可設解析式為一般形式:

      y=a_^2+b_+c(a≠0).

      (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(_-h)^2+k(a≠0).

      (3)當題給條件為已知圖象與_軸的兩個交點坐標時,可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

      7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

    函數知識點總結11

      1.常量和變量

      在某變化過程中可以取不同數值的量,叫做變量.在某變化過程中保持同一數值的量或數,叫常量或常數.

      2.函數

      設在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數.

      3.自變量的取值范圍

      (1)整式:自變量取一切實數.(2)分式:分母不為零.

      (3)偶次方根:被開方數為非負數.

      (4)零指數與負整數指數冪:底數不為零.

      4.函數值

      對于自變量在取值范圍內的一個確定的值,如當x=a時,函數有唯一確定的對應值,這個對應值,叫做x=a時的函數值.

      5.函數的表示法

      (1)解析法;(2)列表法;(3)圖象法.

      6.函數的圖象

      把自變量x的一個值和函數y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內描出一個點,所有這些點的集合,叫做這個函數的圖象.由函數解析式畫函數圖象的步驟:

      (1)寫出函數解析式及自變量的取值范圍;

      (2)列表:列表給出自變量與函數的一些對應值;

      (3)描點:以表中對應值為坐標,在坐標平面內描出相應的點;

      (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.

      7.一次函數

      (1)一次函數

      如果y=kx+b(k、b是常數,k≠0),那么y叫做x的一次函數.

      特別地,當b=0時,一次函數y=kx+b成為y=kx(k是常數,k≠0),這時,y叫做x的正比例函數.

      (2)一次函數的圖象

      一次函數y=kx+b的圖象是一條經過(0,b)點和點的直線.特別地,正比例函數圖象是一條經過原點的直線.需要說明的是,在平面直角坐標系中,“直線”并不等價于“一次函數y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數圖象.

      (3)一次函數的性質

      當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.直線y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為.

      (4)用函數觀點看方程(組)與不等式

      ①任何一元一次方程都可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時,求相應的自變量的值,從圖象上看,相當于已知直線y=kx+b,確定它與x軸交點的橫坐標.

      ②二元一次方程組對應兩個一次函數,于是也對應兩條直線,從“數”的角度看,解方程組相當于考慮自變量為何值時兩個函數值相等,以及這兩個函數值是何值;從“形”的角度看,解方程組相當于確定兩條直線的交點的坐標.

      ③任何一元一次不等式都可以轉化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大于0或小于0時,求自變量相應的取值范圍.

      8.反比例函數(1)反比例函數

      (1)如果(k是常數,k≠0),那么y叫做x的反比例函數.

      (2)反比例函數的圖象反比例函數的圖象是雙曲線.

      (3)反比例函數的性質

      ①當k>0時,圖象的兩個分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減小.

      ②當k<0時,圖象的兩個分支分別在第二、四象限內,在各自的象限內,y隨x的增大而增大.

      ③反比例函數圖象關于直線y=±x對稱,關于原點對稱.

      (4)k的兩種求法

      ①若點(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

      若雙曲線上任一點A(x,y),AB⊥x軸于B,則S△AOB

      (5)正比例函數和反比例函數的交點問題

      若正比例函數y=k1x(k1≠0),反比例函數,則當k1k2<0時,兩函數圖象無交點;

      當k1k2>0時,兩函數圖象有兩個交點,坐標分別為由此可知,正反比例函數的圖象若有交點,兩交點一定關于原點對稱.

      1.二次函數

      如果y=ax2+bx+c(a,b,c為常數,a≠0),那么y叫做x的二次函數.

      幾種特殊的二次函數:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).

      2.二次函數的圖象

      二次函數y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y=a(x-h)2+k(a≠0)的圖象.

      3.二次函數的性質

      二次函數y=ax2+bx+c的性質對應在它的圖象上,有如下性質:

      (1)拋物線y=ax2+bx+c的'頂點是,對稱軸是直線,頂點必在對稱軸上;

      (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當x<時,y隨x的增大而減小;當x>時,y隨x的增大而增大;當x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當x<,y隨x的增大而增大;當時,y隨x的增大而減小;當x=時,y有最大值;

      (3)拋物線y=ax2+bx+c與y軸的交點為(0,c);

      (4)在二次函數y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:

      <0時,拋物線y=ax2+bx+c與x軸沒有公共點.=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點;當=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是和,這兩點的距離為;當當4.拋物線的平移

      拋物線y=a(x-h)2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h)2+k.平移的方向、距離要根據h、k的值來決定.

    函數知識點總結12

      第一、求函數定義域題忽視細節函數的定義域是使函數有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據函數解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數的定義域。

      在求一般函數定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數大于0以及0的0次冪無意義。函數的定義域是非空的數集,在解答函數定義域類的題時千萬別忘了這一點。復合函數要注意外層函數的定義域由內層函數的值域決定。

      第二、帶絕對值的函數單調性判斷錯誤帶絕對值的函數實質上就是分段函數,判斷分段函數的單調性有兩種方法:第一,在各個段上根據函數的.解析式所表示的函數的單調性求出單調區間,然后對各個段上的單調區間進行整合;第二,畫出這個分段函數的圖象,結合函數圖象、性質能夠進行直觀的判斷。函數題離不開函數圖象,而函數圖象反應了函數的所有性質,考生在解答函數題時,要第一時間在腦海中畫出函數圖象,從圖象上分析問題,解決問題。

      對于函數不同的單調遞增(減)區間,千萬記住,不要使用并集,指明這幾個區間是該函數的單調遞增(減)區間即可。

      第三、求函數奇偶性的常見錯誤求函數奇偶性類的題最常見的錯誤有求錯函數定義域或忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等等。判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域區間關于原點對稱,如果不具備這個條件,函數一定是非奇非偶的函數。在定義域區間關于原點對稱的前提下,再根據奇偶函數的定義進行判斷。

      在用定義進行判斷時,要注意自變量在定義域區間內的任意性。

      第四、抽象函數推理不嚴謹很多抽象函數問題都是以抽象出某一類函數的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數中一些具體函數的性質去解決抽象函數。多用特殊賦值法,通過特殊賦可以找到函數的不變性質,這往往是問題的突破口。

      抽象函數性質的證明屬于代數推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規范。

      第五、函數零點定理使用不當若函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,且有f(a)f(b)<0。那么函數y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數的零點定理,分為“變號零點”和“不變號零點”,而對于“不變號零點”,函數的零點定理是“無能為力”的,在解決函數的零點時,考生需格外注意這類問題。

      第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。

      因此,考生在求解曲線的切線問題時,首先要區分是什么類型的切線。

      第七、混淆導數與單調性的關系一個函數在某個區間上是增函數的這類題型,如果考生認為函數的導函數在此區間上恒大于0,很容易就會出錯。

      解答函數的單調性與其導函數的關系時一定要注意,一個函數的導函數在某個區間上單調遞增(減)的充要條件是這個函數的導函數在此區間上恒大(小)于等于0,且導函數在此區間的任意子區間上都不恒為零。

      第八、導數與極值關系不清考生在使用導數求函數極值類問題時,容易出現的錯誤就是求出使導函數等于0的點,卻沒有對這些點左右兩側導函數的符號進行判斷,誤以為使導函數等于0的點就是函數的極值點,往往就會出錯,出錯原因就是考生對導數與極值關系沒搞清楚。可導函數在一個點處的導函數值為零只是這個函數在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數求函數極值時,一定要對極值點進行仔細檢查。

    函數知識點總結13

      一、函數對稱性:

      1.2.3.4.5.6.7.8.

      f(a+x)=f(a-x)==>f(x)關于x=a對稱

      f(a+x)=f(b-x)==>f(x)關于x=(a+b)/2對稱f(a+x)=-f(a-x)==>f(x)關于點(a,0)對稱f(a+x)=-f(a-x)+2b==>f(x)關于點(a,b)對稱

      f(a+x)=-f(b-x)+c==>f(x)關于點[(a+b)/2,c/2]對稱y=f(x)與y=f(-x)關于x=0對稱y=f(x)與y=-f(x)關于y=0對稱y=f(x)與y=-f(-x)關于點(0,0)對稱

      例1:證明函數y=f(a+x)與y=f(b-x)關于x=(b-a)/2對稱。

      【解析】求兩個不同函數的對稱軸,用設點和對稱原理作解。

      證明:假設任意一點P(m,n)在函數y=f(a+x)上,令關于x=t的對稱點Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

      ∴b2t=a,==>t=(b-a)/2,即證得對稱軸為x=(b-a)/2.

      例2:證明函數y=f(a-x)與y=f(xb)關于x=(a+b)/2對稱。

      證明:假設任意一點P(m,n)在函數y=f(a-x)上,令關于x=t的對稱點Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

      ∴2t-b=a,==>t=(a+b)/2,即證得對稱軸為x=(a+b)/2.

      二、函數的周期性

      令a,b均不為零,若:

      1、函數y=f(x)存在f(x)=f(x+a)==>函數最小正周期T=|a|

      2、函數y=f(x)存在f(a+x)=f(b+x)==>函數最小正周期T=|b-a|

      3、函數y=f(x)存在f(x)=-f(x+a)==>函數最小正周期T=|2a|

      4、函數y=f(x)存在f(x+a)=1/f(x)==>函數最小正周期T=|2a|

      5、函數y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數最小正周期T=|4a|

      這里只對第2~5點進行解析。

      第2點解析:

      令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

      第3點解析:同理,f(x+a)=-f(x+2a)……

      ①f(x)=-f(x+a)……

      ②∴由①和②解得f(x)=f(x+2a)∴函數最小正周期T=|2a|

      第4點解析:

      f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

      又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

      ∴函數最小正周期T=|2a|

      第5點解析:

      ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

      ∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1]

      那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

      由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

      ∴函數最小正周期T=|4a|

      擴展閱讀:函數對稱性、周期性和奇偶性的規律總結

      函數對稱性、周期性和奇偶性規律總結

      (一)同一函數的函數的奇偶性與對稱性:(奇偶性是一種特殊的對稱性)

      1、奇偶性:

      (1)奇函數關于(0,0)對稱,奇函數有關系式f(x)f(x)0

      (2)偶函數關于y(即x=0)軸對稱,偶函數有關系式f(x)f(x)

      2、奇偶性的拓展:同一函數的對稱性

      (1)函數的軸對稱:

      函數yf(x)關于xa對稱f(ax)f(ax)

      f(ax)f(ax)也可以寫成f(x)f(2ax)或f(x)f(2ax)

      若寫成:f(ax)f(bx),則函數yf(x)關于直線x稱

      (ax)(bx)ab對22證明:設點(x1,y1)在yf(x)上,通過f(x)f(2ax)可知,y1f(x1)f(2ax1),

      即點(2ax1,y1)也在yf(x)上,而點(x1,y1)與點(2ax1,y1)關于x=a對稱。得證。

      說明:關于xa對稱要求橫坐標之和為2a,縱坐標相等。

      ∵(ax1,y1)與(ax1,y1)關于xa對稱,∴函數yf(x)關于xa對稱

      f(ax)f(ax)

      ∵(x1,y1)與(2ax1,y1)關于xa對稱,∴函數yf(x)關于xa對稱

      f(x)f(2ax)

      ∵(x1,y1)與(2ax1,y1)關于xa對稱,∴函數yf(x)關于xa對稱

      f(x)f(2ax)

      (2)函數的點對稱:

      函數yf(x)關于點(a,b)對稱f(ax)f(ax)2b

      上述關系也可以寫成f(2ax)f(x)2b或f(2ax)f(x)2b

      若寫成:f(ax)f(bx)c,函數yf(x)關于點(abc,)對稱2證明:設點(x1,y1)在yf(x)上,即y1f(x1),通過f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(2ax1,2by1)也在yf(x)上,而點(2ax1,2by1)與(x1,y1)關于(a,b)對稱。得證。

      說明:關于點(a,b)對稱要求橫坐標之和為2a,縱坐標之和為2b,如(ax)與(ax)之和為2a。

      (3)函數yf(x)關于點yb對稱:假設函數關于yb對稱,即關于任一個x值,都有兩個y值與其對應,顯然這不符合函數的定義,故函數自身不可能關于yb對稱。但在曲線c(x,y)=0,則有可能會出現關于yb對稱,比如圓c(x,y)x2y240它會關于y=0對稱。

      (4)復合函數的'奇偶性的性質定理:

      性質1、復數函數y=f[g(x)]為偶函數,則f[g(-x)]=f[g(x)]。復合函數y=f[g(x)]為奇函數,則f[g(-x)]=-f[g(x)]。

      性質2、復合函數y=f(x+a)為偶函數,則f(x+a)=f(-x+a);復合函數y=f(x+a)為奇函數,則f(-x+a)=-f(a+x)。

      性質3、復合函數y=f(x+a)為偶函數,則y=f(x)關于直線x=a軸對稱。復合函數y=f(x+a)為奇函數,則y=f(x)關于點(a,0)中心對稱。

      總結:x的系數一個為1,一個為-1,相加除以2,可得對稱軸方程

      總結:x的系數一個為1,一個為-1,f(x)整理成兩邊,其中一個的系數是為1,另一個為-1,存在對稱中心。

      總結:x的系數同為為1,具有周期性。

      (二)兩個函數的圖象對稱性

      1、yf(x)與yf(x)關于X軸對稱。

      證明:設yf(x)上任一點為(x1,y1)則y1f(x1),所以yf(x)經過點(x1,y1)

      ∵(x1,y1)與(x1,y1)關于X軸對稱,∴y1f(x1)與yf(x)關于X軸對稱.注:換種說法:yf(x)與yg(x)f(x)若滿足f(x)g(x),即它們關于y0對稱。

    函數知識點總結14

      奇函數和偶函數的定義

      奇函數:如果函數f(x)的定義域中任意x有f(—x)=—f(x),則函數f(x)稱為奇函數。

      偶數函數:如果函數f(x)的.定義域中任意x有f(—x)=f(x),則函數f(x)稱為偶數函數。

      性質

      奇函數性質:

      1、圖象關于原點對稱

      2、滿足f(—x)= — f(x)

      3、關于原點對稱的區間上單調性一致

      4、如果奇函數在x=0上有定義,那么有f(0)=0

      5、定義域關于原點對稱(奇偶函數共有的)

      偶函數性質:

      1、圖象關于y軸對稱

      2、滿足f(—x)= f(x)

      3、關于原點對稱的區間上單調性相反

      4、如果一個函數既是奇函數有是偶函數,那么有f(x)=0

      5、定義域關于原點對稱(奇偶函數共有的)

      常用運算方法

      奇函數±奇函數=奇函數

      偶函數±偶函數=偶函數

      奇函數×奇函數=偶函數

      偶函數×偶函數=偶函數

      奇函數×偶函數=奇函數

      證明方法

      設f(x),g(x)為奇函數,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函數加奇函數還是奇函數;

      若f(x),g(x)為偶函數,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函數加偶函數還是偶函數。

    函數知識點總結15

      (一)函數

      1、變量:在一個變化過程中可以取不同數值的量。常量:在一個變化過程中只能取同一數值的量。

      2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。一個X對應兩個Y值是錯誤的x判斷Y是否為X的函數,只要看X取值確定的時候,Y是否有唯一確定的值與之對應;

      3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。

      4、確定函數定義域的方法:

      (1)關系式為整式時,函數定義域為全體實數;

      (2)關系式含有分式時,分式的分母不等于零;

      (3)關系式含有二次根式時,被開放方數大于等于零;

      (4)關系式中含有指數為零的式子時,底數不等于零;

      (5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。

      5、函數的解析式:用含有表示自變量的字母的代數式表示因變量的式子叫做函數的解析式

      6、函數的圖像(函數圖像上的點一定符合函數表達式,符合函數表達式的點一定在函數圖像上)

      一般來說,對于一個函數,如果把自變量與函數的每對對應值分別作為點的橫、縱坐標,那么坐標平面內由這些點組成的圖形,就是這個函數的圖象;

      運用:求解析式中的參數、求函數解釋式;

      7、描點法畫函數圖形的一般步驟

      第一步:列表(表中給出一些自變量的值及其對應的函數值);函數表達式為y=3X-2-1-20xx-6-3-6036

      第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的.函數值為縱坐標,描出表格中數值對應的各點);

      第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。

      8、函數的表示方法

      列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。

      解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。

      圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。

      (二)一次函數1、一次函數的定義

      一般地,形如ykxb(k,b是常數(其中k與b的形式較為靈活,但只要抓住函數基本形式,準確找到k與b,根據題意求的常數的取值范圍),且k0)的函數,叫做一次函數,其中x是自變量。當b0時,一次函數ykx,又叫做正比例函數。

      ⑴一次函數的解析式的形式是ykxb,要判斷一個函數是否是一次函數,就是判斷是否能化成以上形式;

      ⑵當b0,k0時,ykx仍是一次函數;

      ⑶當b0,k0時,它不是一次函數;

      ⑷正比例函數是一次函數的特例,一次函數包括正比例函數;

      2、正比例函數及性質

      一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.注:正比例函數一般形式y=kx(k不為零)①k不為零②x指數為1③b取零

      當k>0時,直線y=kx經過三、一象限,從左向右上升,即隨x的增大y也增大;當k0時,圖像經過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,y隨x的增大而增大();k4、一次函數y=kx+b的圖象的畫法.

      在實際做題中只需要倆點就可以確定函數圖像,一般我們令X=0求出阿Y的值再令Y=0求出X的值.如圖

      y=kx+b(0,b)解析:(兩點確定一條直線,這兩點我們一般確定在坐標軸上,因為X軸上所有坐標點的縱坐標為0即(x,0)Y軸上所有點的

      (-b/k,0)橫坐標為0即(0,y)這樣作圖既快又準確

      5、正比例函數與一次函數之間的關系

      一次函數y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b0時,直線經過一、三象限;k0,y隨x的增大而增大;(從左向右上升)k0時,將直線y=kx的圖象向上平移b個單位;b。

    【函數知識點總結】相關文章:

    函數知識點總結06-23

    函數知識點總結02-10

    函數知識點總結【熱門】08-21

    函數知識點總結(精)08-21

    函數知識點03-01

    [精選]函數知識點03-01

    初二函數知識點總結01-13

    關于高中函數的知識點總結03-30

    初中數學函數知識點總結04-08

    函數知識點總結20篇04-20

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      中文字字幕乱码在线观看精品 | 欧美精品剧情一区二区三区 | 亚洲一区黑人在线 | 一本之道高清乱码久久久 | 中文字幕久热精品免费视频 | 亚洲日本va中文字幕午夜福利 |