二次函數(shù)的知識點總結

    時間:2021-03-30 20:42:50 總結 我要投稿

    二次函數(shù)的知識點總結

      各位同學們,大家好哦,小編為大家?guī)砹硕魏瘮?shù)的知識點總結哦,一起看看吧!

    二次函數(shù)的知識點總結

      二次函數(shù)的知識點總結

      I.定義與定義表達式

      一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。

      二次函數(shù)表達式的右邊通常為二次三項式。

      II.二次函數(shù)的三種表達式

      一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

      頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

      交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

      注:在3種形式的互相轉化中,有如下關系:

      h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

      III.二次函數(shù)的圖像

      在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

      IV.拋物線的性質

      1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

      對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

      2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

      3.二次項系數(shù)a決定拋物線的開口方向和大小。

      當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

      4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

      當a與b同號時(即ab>0),對稱軸在y軸左;

      當a與b異號時(即ab<0),對稱軸在y軸右。

      5.常數(shù)項c決定拋物線與y軸交點。

      拋物線與y軸交于(0,c)

      6.拋物線與x軸交點個數(shù)

      Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

      Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

      Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

      V.二次函數(shù)與一元二次方程

      特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

      當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

      此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。

      1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

      當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

      當h<0時,則向左平行移動|h|個單位得到.

      當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

      當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

      當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

      當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

      因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

      2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

      3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的'增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

      4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

      (1)圖象與y軸一定相交,交點坐標為(0,c);

      (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

      (a≠0)的兩根.這兩點間的距離AB=|x-x|

      當△=0.圖象與x軸只有一個交點;

      當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

      5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

      頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

      6.用待定系數(shù)法求二次函數(shù)的解析式

      (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

      y=ax^2+bx+c(a≠0).

      (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

      (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).

      7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

    【二次函數(shù)的知識點總結】相關文章:

    二次函數(shù)的圖像說課稿11-04

    二次函數(shù)說課稿02-17

    二次函數(shù)的說課稿(精選5篇)05-12

    二次函數(shù)測試題的整理08-20

    二次函數(shù)說課稿(11篇)02-17

    二次函數(shù)說課稿11篇11-15

    二次函數(shù)超級經(jīng)典課件教案05-13

    數(shù)學二次函數(shù)復習資料08-27

    奇函數(shù)的反函數(shù)是奇函數(shù)嗎10-12

    函數(shù)與反函數(shù)關于什么對稱10-12

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      一本到国产在线精品国内 | 五月婷婷婷综合色 | 一本一本久久A精品综合 | 日本免费高清aⅴ乱码专区 色综合天天综合网在线观看 | 亚洲欧美日本另类 | 午夜福利免费视频 |