中考數學函數公式總結

    時間:2021-09-13 19:29:26 總結 我要投稿

    中考數學函數公式總結

      總結是指對某一階段的工作、學習或思想中的經驗或情況進行分析研究,做出帶有規律性結論的書面材料,通過它可以正確認識以往學習和工作中的優缺點,為此我們要做好回顧,寫好總結。那么你真的懂得怎么寫總結嗎?以下是小編為大家整理的中考數學函數公式總結,歡迎閱讀,希望大家能夠喜歡。

    中考數學函數公式總結

      三角函數的公式

      關于初中三角函數公式,在考試中用的最多的就是特殊三角度數的特殊值。如:

      sin30°=1/2

      sin45°=√2/2

      sin60°=√3/2

      cos30°=√3/2

      cos45°=√2/2

      cos60°=1/2

      tan30°=√3/3

      tan45°=1

      tan60°=√3[1]

      cot30°=√3

      cot45°=1

      cot60°=√3/3

      其次就是兩角和公式,這是在初中數學考試中問答題中容易用到的三角函數公式。兩角和公式

      sin(A+B)=sinAcosB+cosAsinB

      sin(A-B)=sinAcosB-sinBcosA

      cos(A+B)=cosAcosB-sinAsinB

      cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB)

      tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

      ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

      除了以上常考的初中三角函數公示之外,還有半角公式和和差化積公式也在選擇題中用到。所以同學們還是要好好掌握。

      半角公式

      sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

      cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

      tan(A/2)=√((1-cosA)/((1+cosA))

      tan(A/2)=-√((1-cosA)/((1+cosA))

      ctg(A/2)=√((1+cosA)/((1-cosA))

      ctg(A/2)=-√((1+cosA)/((1-cosA))

      和差化積

      2sinAcosB=sin(A+B)+sin(A-B)

      2cosAsinB=sin(A+B)-sin(A-B)

      2cosAcosB=cos(A+B)-sin(A-B)

      -2sinAsinB=cos(A+B)-cos(A-B)

      sinA+sinB=2sin((A+B)/2)cos((A-B)/2

      cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosB

      tanA-tanB=sin(A-B)/cosAcosB

      ctgA+ctgBsin(A+B)/sinAsinB

      - ctgA+ctgBsin(A+B)/sinAsinB

      銳角三角函數公式

      sin α=∠α的對邊/斜邊

      cos α=∠α的鄰邊/斜邊

      tan α=∠α的對邊/ ∠α的鄰邊

      cot α=∠α的鄰邊/ ∠α的對邊

      倍角公式

      Sin2A=2SinA.CosA

      Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

      tan2A=(2tanA)/(1-tanA^2)

      (注:SinA^2是sinA的平方sin2(A) )

      三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α)

      cos3α=4cosα·cos(π/3+α)cos(π/3-α)

      tan3a = tan a · tan(π/3+a)· tan(π/3-a)

      三倍角公式推導

      sin3a=sin(2a+a)=sin2acosa+cos2asina

      輔助角公式

      Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

      sint=B/(A^2+B^2)^(1/2)

      cost=A/(A^2+B^2)^(1/2)

      tant=B/A

      Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

      降冪公式

      sin^2(α)=(1-cos(2α))/2=versin(2α)/2

      cos^2(α)=(1+cos(2α))/2=covers(2α)/2

      tan^2(α)=(1-cos(2α))/(1+cos(2α))

      推導公式

      tanα+cotα=2/sin2α

      tanα-cotα=-2cot2α

      1+cos2α=2cos^2α

      1-cos2α=2sin^2α

      1+sinα

      =(sinα/2+cosα/2)^2

      =2sina(1-sin2a)+(1-2sin2a)sina

      =3sina-4sin3a

      cos3a

      =cos(2a+a)

      =cos2acosa-sin2asina

      =(2cos2a-1)cosa-2(1-sin2a)cosa

      =4cos3a-3cosa

      sin3a

      =3sina-4sin3a

      =4sina(3/4-sin2a)

      =4sina[(√3/2)2-sin2a]

      =4sina(sin260°-sin2a)

      =4sina(sin60°+sina)(sin60°-sina)

      =4sina__2sin[(60+a)/2]cos[(60°-a)/2]__2sin[(60°-a)/2]cos[(60°-a)/2]

      =4sinasin(60°+a)sin(60°-a)

      cos3a

      =4cos3a-3cosa

      =4cosa(cos2a-3/4)

      =4cosa[cos2a-(√3/2)2]

      =4cosa(cos2a-cos230°)

      =4cosa(cosa+cos30°)(cosa-cos30°)

      =4cosa__2cos[(a+30°)/2]cos[(a-30°)/2]__{-2sin[(a+30°)/2]sin[(a-30°)/2]}

      =-4cosasin(a+30°)sin(a-30°)

      =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

      =-4cosacos(60°-a)[-cos(60°+a)]

      =4cosacos(60°-a)cos(60°+a)

      上述兩式相比可得

      tan3a=tanatan(60°-a)tan(60°+a)

      半角公式

      tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

      cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

      sin^2(a/2)=(1-cos(a))/2

      cos^2(a/2)=(1+cos(a))/2

      tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

      三角和

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      兩角和差

      cos(α+β)=cosα·cosβ-sinα·sinβ

      cos(α-β)=cosα·cosβ+sinα·sinβ

      sin(α±β)=sinα·cosβ±cosα·sinβ

      tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

      tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

      和差化積

      sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

      sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

      cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

      cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

      tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

      tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

      積化和差

      sinαsinβ = [cos(α-β)-cos(α+β)] /2

      cosαcosβ = [cos(α+β)+cos(α-β)]/2

      sinαcosβ = [sin(α+β)+sin(α-β)]/2

      cosαsinβ = [sin(α+β)-sin(α-β)]/2

      誘導公式

      sin(-α) = -sinα

      cos(-α) = cosα

      tan (—a)=-tanα

      sin(π/2-α) = cosα

      cos(π/2-α) = sinα

      sin(π/2+α) = cosα

      cos(π/2+α) = -sinα

      sin(π-α) = sinα

      cos(π-α) = -cosα

      sin(π+α) = -sinα

      cos(π+α) = -cosα

      tanA= sinA/cosA

      tan(π/2+α)=-cotα

      tan(π/2-α)=cotα

      tan(π-α)=-tanα

      tan(π+α)=tanα

      誘導公式記背訣竅:奇變偶不變,符號看象限

      萬能公式

      sinα=2tan(α/2)/[1+tan^(α/2)]

      cosα=[1-tan^(α/2)]/1+tan^(α/2)]

      tanα=2tan(α/2)/[1-tan^(α/2)]

      其它公式

      (1)(sinα)^2+(cosα)^2=1

      (2)1+(tanα)^2=(secα)^2

      (3)1+(cotα)^2=(cscα)^2

      證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

      (4)對于任意非直角三角形,總有

      tanA+tanB+tanC=tanAtanBtanC

      證:

      A+B=π-C

      tan(A+B)=tan(π-C)

      (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

      整理可得

      tanA+tanB+tanC=tanAtanBtanC

      得證

      同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立

      由tanA+tanB+tanC=tanAtanBtanC可得出以下結論

      (5)cotAcotB+cotAcotC+cotBcotC=1

      (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

      (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

      (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

      (9)sinα+sin(α+2π/n)+sin(α+2π__2/n)+sin(α+2π__3/n)+……+sin[α+2π__(n-1)/n]=0

      cosα+cos(α+2π/n)+cos(α+2π__2/n)+cos(α+2π__3/n)+……+cos[α+2π__(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

      tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

      中考數學“函數”

      (1)關系式為整式時,函數定義域為全體實數;

      (2)關系式含有分式時,分式的分母不等于零;

      (3)關系式含有二次根式時,被開放方數大于等于零;

      (4)關系式中含有指數為零的式子時,底數不等于零;

      (5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。

      用待定系數法確定函數解析式的一般步驟

      (1)根據已知條件寫出含有待定系數的函數關系式;

      (2)將x、y的幾對值或圖像上的幾個點的坐標代入上述函數關系式中得到以待定系數為未知數的方程

      (3)解方程得出未知系數的`值;

      (4)將求出的待定系數代回所求的函數關系式中得出所求函數的解析式。、一次函數的定義

      一次函數,也作線性函數,在x,y坐標軸中可以用一條直線表示,當一次函數中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。

      函數的表示方法

      列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。

      解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。

      圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。

    【中考數學函數公式總結】相關文章:

    蘋果數學公式矢量圖數學手抄報07-18

    奇函數的反函數是奇函數嗎10-12

    高中數學復數運算公式有哪些10-12

    初三數學公式與學習方法12-28

    小學數學圖形計算公式手抄報07-18

    數學二次函數復習資料08-27

    函數與反函數關于什么對稱10-12

    常數函數是周期函數嗎?10-12

    奇函數乘奇函數等于什么10-12

    數學最好的學習方法與必記公式12-31

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      日韩欧美国产一区二区浪潮 | 日韩欧美中文在线精品 | 一区二区三区欧美国产 | 亚洲产精品VA在线观看 | 天堂日本美女在线播放 | 制服丝袜视频高清中文字幕 |