高一數學知識點總結梳理最新

    時間:2021-10-08 11:31:34 總結 我要投稿

    高一數學知識點總結梳理五篇最新

      總結是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規律性的結論,通過它可以全面地、系統地了解以往的學習和工作情況,讓我們好好寫一份總結吧。那么你真的懂得怎么寫總結嗎?下面是小編整理的高一數學知識點總結梳理五篇最新,希望能夠幫助到大家。

    高一數學知識點總結梳理五篇最新

    高一數學知識點總結梳理五篇最新1

      立體幾何初步

      柱、錐、臺、球的結構特征

      棱柱

      定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

      分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

      表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

      幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

      棱錐

      定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

      分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

      表示:用各頂點字母,如五棱錐

      幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

      棱臺

      定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

      分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等

      表示:用各頂點字母,如五棱臺

      幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

      圓柱

      定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

      幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

      圓錐

      定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

      幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

      圓臺

      定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

      幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

      球體

      定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

      幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

      NO.2空間幾何體的三視圖

      定義三視圖

      定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

      注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

      俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

      側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

      NO.3空間幾何體的直觀圖——斜二測畫法

      斜二測畫法

      斜二測畫法特點

     、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;

     、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

      直線與方程

      直線的傾斜角

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

      直線的斜率

      定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

      過兩點的直線的斜率公式:

      (注意下面四點)

      (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關;

      (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

      (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

      冪函數

      定義

      形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。

      定義域和值域

      當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域

      性質

      對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

      首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

      排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

      排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;

      排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

    高一數學知識點總結梳理五篇最新2

      冪函數的性質:

      對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

      首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

      排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

      排除了為0這種可能,即對于x<0x="">0的所有實數,q不能是偶數;

      排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

      總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;

      如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的.所有實數。

      在x大于0時,函數的值域總是大于0的實數。

      在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。

      而只有a為正數,0才進入函數的值域。

      由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

      可以看到:

      (1)所有的圖形都通過(1,1)這點。

      (2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。

      (3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。

      (4)當a小于0時,a越小,圖形傾斜程度越大。

      (5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。

      (6)顯然冪函數無界。

      解題方法:換元法

      解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

      換元法又稱輔助元素法、變量代換法.通過引進新的變量,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來.或者變為熟悉的形式,把復雜的計算和推證簡化。

      它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。

    高一數學知識點總結梳理五篇最新3

      1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

      2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

      3、a-邊長,S=6a2,V=a3

      4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

      5、棱柱S-h-高V=Sh

      6、棱錐S-h-高V=Sh/3

      7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

      8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

      9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

      10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

      11、r-底半徑h-高V=πr^2h/3

      12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

      14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

      15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

      16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

      17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

    高一數學知識點總結梳理五篇最新4

      反比例函數

      形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

      自變量x的取值范圍是不等于0的一切實數。

      反比例函數圖像性質:

      反比例函數的圖像為雙曲線。

      由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。

      另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

      如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。

      當K>0時,反比例函數圖像經過一,三象限,是減函數

      當K<0時,反比例函數圖像經過二,四象限,是增函數

      反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

      知識點:

      1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

      2.對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

    高一數學知識點總結梳理五篇最新5

      空間幾何體表面積體積公式:

      1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

      2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

      3、a-邊長,S=6a2,V=a3

      4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

      5、棱柱S-h-高V=Sh

      6、棱錐S-h-高V=Sh/3

      7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

      8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

      9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

      10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

      11、r-底半徑h-高V=πr^2h/3

      12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

      14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

      15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

      16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

      17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

    【高一數學知識點總結梳理五篇最新】相關文章:

    高一語文《雨巷》知識點梳理12-27

    高一數學知識點總結07-20

    高一語文上冊《沁園春長沙》的知識點梳理12-27

    高一數學必修一知識點總結08-09

    高一英語學習技巧梳理12-06

    中考物理壓強知識點梳理11-16

    高一政治知識點總結05-08

    《滕王閣序》知識點全梳理12-09

    高一化學知識點總結01-12

    高一歷史知識點總結05-07

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      亚洲欧美久久aⅴ | 日本精品久久久久一区二区三区 | 亚洲欧美日韩专区 | 婷婷的五月天在线视频观看 | 中文字幕大看蕉永久网 | 精品国产肉伦伦在线观看 |